Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Jan 1;183(1):249–259. doi: 10.1084/jem.183.1.249

The extracellular domain of CD45 controls association with the CD4-T cell receptor complex and the response to antigen-specific stimulation

PMCID: PMC2192406  PMID: 8551228

Abstract

The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation, but the function of the different isoforms of CD45 is not known. T cell transfectants have been prepared that express individual CD45 isoforms in cells with a well-defined T cell receptor (TCR) from the D10 T helper 2 clone. We find that cells bearing low molecular weight CD45 isoforms are far more efficient in responding to stimulation with peptide and antigen-presenting cells compared with cells bearing high molecular weight CD45 isoforms. One hypothesis for the preferential activation of cells that express low molecular weight CD45 isoforms is that they interact with other cell surface antigens important in TCR signaling, altering their phosphorylation status and affecting the character of the signal transduction pathway. In this report, using cells expressing single isoforms, we demonstrate that low molecular weight isoforms of CD45 preferentially associate with CD4 and the TCR complex compared with high molecular weight isoforms. The molecular basis for this interaction was further examined using a glycosyl phosphatidyl inositol (GPI)-linked form of CD45Null (lacking tyrosine phosphatase domains), which preferentially associated with CD4 compared with GPI-linked CD45ABC, and cytoplasmic tail mutants of CD4, which retained the ability to coassociate. Using this panel of transfectants, it is clear that the interaction between CD4 and CD45 does not require the cytoplasmic domains of CD45, but is dependent on the specific external domain of the various isoforms: low molecular weight species were more likely to associate with the CD4-TCR complex than the higher molecular weight isoforms, and their ability to coassociate correlated with the magnitude of the response to specific antigen.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Terry L., Timms A., Beverley P. C., Janossy G. Loss of CD45R and gain of UCHL1 reactivity is a feature of primed T cells. J Immunol. 1988 Apr 1;140(7):2171–2178. [PubMed] [Google Scholar]
  2. Altevogt P., Schreck J., Schraven B., Meuer S., Schirrmacher V., Mitsch A. Association of CD2 and T200 (CD45) in mouse T lymphocytes. Int Immunol. 1990;2(4):353–360. doi: 10.1093/intimm/2.4.353. [DOI] [PubMed] [Google Scholar]
  3. Bottomly K., Luqman M., Greenbaum L., Carding S., West J., Pasqualini T., Murphy D. B. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol. 1989 Apr;19(4):617–623. doi: 10.1002/eji.1830190407. [DOI] [PubMed] [Google Scholar]
  4. Bourguignon L. Y., Suchard S. J., Nagpal M. L., Glenney J. R., Jr A T-lymphoma transmembrane glycoprotein (gp180) is linked to the cytoskeletal protein, fodrin. J Cell Biol. 1985 Aug;101(2):477–487. doi: 10.1083/jcb.101.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cahir McFarland E. D., Hurley T. R., Pingel J. T., Sefton B. M., Shaw A., Thomas M. L. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1402–1406. doi: 10.1073/pnas.90.4.1402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chan A. C., Iwashima M., Turck C. W., Weiss A. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR zeta chain. Cell. 1992 Nov 13;71(4):649–662. doi: 10.1016/0092-8674(92)90598-7. [DOI] [PubMed] [Google Scholar]
  7. Chang H. L., Lefrancois L., Zaroukian M. H., Esselman W. J. Developmental expression of CD45 alternate exons in murine T cells. Evidence of additional alternate exon use. J Immunol. 1991 Sep 1;147(5):1687–1693. [PubMed] [Google Scholar]
  8. Desai D. M., Sap J., Schlessinger J., Weiss A. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase. Cell. 1993 May 7;73(3):541–554. doi: 10.1016/0092-8674(93)90141-c. [DOI] [PubMed] [Google Scholar]
  9. Desai D. M., Sap J., Silvennoinen O., Schlessinger J., Weiss A. The catalytic activity of the CD45 membrane-proximal phosphatase domain is required for TCR signaling and regulation. EMBO J. 1994 Sep 1;13(17):4002–4010. doi: 10.1002/j.1460-2075.1994.tb06716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dialynas D. P., Wilde D. B., Marrack P., Pierres A., Wall K. A., Havran W., Otten G., Loken M. R., Pierres M., Kappler J. Characterization of the murine antigenic determinant, designated L3T4a, recognized by monoclonal antibody GK1.5: expression of L3T4a by functional T cell clones appears to correlate primarily with class II MHC antigen-reactivity. Immunol Rev. 1983;74:29–56. doi: 10.1111/j.1600-065x.1983.tb01083.x. [DOI] [PubMed] [Google Scholar]
  11. Dianzani U., Luqman M., Rojo J., Yagi J., Baron J. L., Woods A., Janeway C. A., Jr, Bottomly K. Molecular associations on the T cell surface correlate with immunological memory. Eur J Immunol. 1990 Oct;20(10):2249–2257. doi: 10.1002/eji.1830201014. [DOI] [PubMed] [Google Scholar]
  12. Dianzani U., Redoglia V., Malavasi F., Bragardo M., Pileri A., Janeway C. A., Jr, Bottomly K. Isoform-specific associations of CD45 with accessory molecules in human T lymphocytes. Eur J Immunol. 1992 Feb;22(2):365–371. doi: 10.1002/eji.1830220212. [DOI] [PubMed] [Google Scholar]
  13. Furukawa T., Itoh M., Krueger N. X., Streuli M., Saito H. Specific interaction of the CD45 protein-tyrosine phosphatase with tyrosine-phosphorylated CD3 zeta chain. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10928–10932. doi: 10.1073/pnas.91.23.10928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Glaichenhaus N., Shastri N., Littman D. R., Turner J. M. Requirement for association of p56lck with CD4 in antigen-specific signal transduction in T cells. Cell. 1991 Feb 8;64(3):511–520. doi: 10.1016/0092-8674(91)90235-q. [DOI] [PubMed] [Google Scholar]
  15. Hathcock K. S., Laszlo G., Dickler H. B., Sharrow S. O., Johnson P., Trowbridge I. S., Hodes R. J. Expression of variable exon A-, B-, and C-specific CD45 determinants on peripheral and thymic T cell populations. J Immunol. 1992 Jan 1;148(1):19–28. [PubMed] [Google Scholar]
  16. Hovis R. R., Donovan J. A., Musci M. A., Motto D. G., Goldman F. D., Ross S. E., Koretzky G. A. Rescue of signaling by a chimeric protein containing the cytoplasmic domain of CD45. Science. 1993 Apr 23;260(5107):544–546. doi: 10.1126/science.8475387. [DOI] [PubMed] [Google Scholar]
  17. Iwashima M., Irving B. A., van Oers N. S., Chan A. C., Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994 Feb 25;263(5150):1136–1139. doi: 10.1126/science.7509083. [DOI] [PubMed] [Google Scholar]
  18. Johnson P., Greenbaum L., Bottomly K., Trowbridge I. S. Identification of the alternatively spliced exons of murine CD45 (T200) required for reactivity with B220 and other T200-restricted antibodies. J Exp Med. 1989 Mar 1;169(3):1179–1184. doi: 10.1084/jem.169.3.1179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kaye J., Porcelli S., Tite J., Jones B., Janeway C. A., Jr Both a monoclonal antibody and antisera specific for determinants unique to individual cloned helper T cell lines can substitute for antigen and antigen-presenting cells in the activation of T cells. J Exp Med. 1983 Sep 1;158(3):836–856. doi: 10.1084/jem.158.3.836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koretzky G. A., Kohmetscher M., Ross S. CD45-associated kinase activity requires lck but not T cell receptor expression in the Jurkat T cell line. J Biol Chem. 1993 Apr 25;268(12):8958–8964. [PubMed] [Google Scholar]
  21. Lee W. T., Yin X. M., Vitetta E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol. 1990 May 1;144(9):3288–3295. [PubMed] [Google Scholar]
  22. Luqman M., Johnson P., Trowbridge I., Bottomly K. Differential expression of the alternatively spliced exons of murine CD45 in Th1 and Th2 cell clones. Eur J Immunol. 1991 Jan;21(1):17–22. doi: 10.1002/eji.1830210104. [DOI] [PubMed] [Google Scholar]
  23. Madrenas J., Wange R. L., Wang J. L., Isakov N., Samelson L. E., Germain R. N. Zeta phosphorylation without ZAP-70 activation induced by TCR antagonists or partial agonists. Science. 1995 Jan 27;267(5197):515–518. doi: 10.1126/science.7824949. [DOI] [PubMed] [Google Scholar]
  24. Maroun C. R., Julius M. Distinct involvement of CD45 in antigen receptor signalling in CD4+ and CD8+ primary T cells. Eur J Immunol. 1994 Apr;24(4):967–973. doi: 10.1002/eji.1830240428. [DOI] [PubMed] [Google Scholar]
  25. McCall M. N., Shotton D. M., Barclay A. N. Expression of soluble isoforms of rat CD45. Analysis by electron microscopy and use in epitope mapping of anti-CD45R monoclonal antibodies. Immunology. 1992 Jun;76(2):310–317. [PMC free article] [PubMed] [Google Scholar]
  26. Mittler R. S., Rankin B. M., Kiener P. A. Physical associations between CD45 and CD4 or CD8 occur as late activation events in antigen receptor-stimulated human T cells. J Immunol. 1991 Nov 15;147(10):3434–3440. [PubMed] [Google Scholar]
  27. Mustelin T., Altman A. Dephosphorylation and activation of the T cell tyrosine kinase pp56lck by the leukocyte common antigen (CD45). Oncogene. 1990 Jun;5(6):809–813. [PubMed] [Google Scholar]
  28. Mustelin T., Coggeshall K. M., Altman A. Rapid activation of the T-cell tyrosine protein kinase pp56lck by the CD45 phosphotyrosine phosphatase. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6302–6306. doi: 10.1073/pnas.86.16.6302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mustelin T., Pessa-Morikawa T., Autero M., Gassmann M., Andersson L. C., Gahmberg C. G., Burn P. Regulation of the p59fyn protein tyrosine kinase by the CD45 phosphotyrosine phosphatase. Eur J Immunol. 1992 May;22(5):1173–1178. doi: 10.1002/eji.1830220510. [DOI] [PubMed] [Google Scholar]
  30. Mustelin T., Williams S., Tailor P., Couture C., Zenner G., Burn P., Ashwell J. D., Altman A. Regulation of the p70zap tyrosine protein kinase in T cells by the CD45 phosphotyrosine phosphatase. Eur J Immunol. 1995 Apr;25(4):942–946. doi: 10.1002/eji.1830250413. [DOI] [PubMed] [Google Scholar]
  31. Novak T. J., Farber D., Leitenberg D., Hong S. C., Johnson P., Bottomly K. Isoforms of the transmembrane tyrosine phosphatase CD45 differentially affect T cell recognition. Immunity. 1994 May;1(2):109–119. doi: 10.1016/1074-7613(94)90104-x. [DOI] [PubMed] [Google Scholar]
  32. Ong C. J., Chui D., Teh H. S., Marth J. D. Thymic CD45 tyrosine phosphatase regulates apoptosis and MHC-restricted negative selection. J Immunol. 1994 Apr 15;152(8):3793–3805. [PubMed] [Google Scholar]
  33. Ostergaard H. L., Shackelford D. A., Hurley T. R., Johnson P., Hyman R., Sefton B. M., Trowbridge I. S. Expression of CD45 alters phosphorylation of the lck-encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc Natl Acad Sci U S A. 1989 Nov;86(22):8959–8963. doi: 10.1073/pnas.86.22.8959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  35. Schraven B., Samstag Y., Altevogt P., Meuer S. C. Association of CD2 and CD45 on human T lymphocytes. Nature. 1990 May 3;345(6270):71–74. doi: 10.1038/345071a0. [DOI] [PubMed] [Google Scholar]
  36. Shiroo M., Goff L., Biffen M., Shivnan E., Alexander D. CD45 tyrosine phosphatase-activated p59fyn couples the T cell antigen receptor to pathways of diacylglycerol production, protein kinase C activation and calcium influx. EMBO J. 1992 Dec;11(13):4887–4897. doi: 10.1002/j.1460-2075.1992.tb05595.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slanetz A. E., Bothwell A. L. Heterodimeric, disulfide-linked alpha/beta T cell receptors in solution. Eur J Immunol. 1991 Jan;21(1):179–183. doi: 10.1002/eji.1830210127. [DOI] [PubMed] [Google Scholar]
  38. Sloan-Lancaster J., Shaw A. S., Rothbard J. B., Allen P. M. Partial T cell signaling: altered phospho-zeta and lack of zap70 recruitment in APL-induced T cell anergy. Cell. 1994 Dec 2;79(5):913–922. doi: 10.1016/0092-8674(94)90080-9. [DOI] [PubMed] [Google Scholar]
  39. Thomas M. L., Reynolds P. J., Chain A., Ben-Neriah Y., Trowbridge I. S. B-cell variant of mouse T200 (Ly-5): evidence for alternative mRNA splicing. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5360–5363. doi: 10.1073/pnas.84.15.5360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Torimoto Y., Dang N. H., Vivier E., Tanaka T., Schlossman S. F., Morimoto C. Coassociation of CD26 (dipeptidyl peptidase IV) with CD45 on the surface of human T lymphocytes. J Immunol. 1991 Oct 15;147(8):2514–2517. [PubMed] [Google Scholar]
  41. Trowbridge I. S., Ostergaard H. L., Johnson P. CD45: a leukocyte-specific member of the protein tyrosine phosphatase family. Biochim Biophys Acta. 1991 Oct 16;1095(1):46–56. doi: 10.1016/0167-4889(91)90043-w. [DOI] [PubMed] [Google Scholar]
  42. Trowbridge I. S., Thomas M. L. CD45: an emerging role as a protein tyrosine phosphatase required for lymphocyte activation and development. Annu Rev Immunol. 1994;12:85–116. doi: 10.1146/annurev.iy.12.040194.000505. [DOI] [PubMed] [Google Scholar]
  43. Volarević S., Burns C. M., Sussman J. J., Ashwell J. D. Intimate association of Thy-1 and the T-cell antigen receptor with the CD45 tyrosine phosphatase. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7085–7089. doi: 10.1073/pnas.87.18.7085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Volarević S., Niklinska B. B., Burns C. M., June C. H., Weissman A. M., Ashwell J. D. Regulation of TCR signaling by CD45 lacking transmembrane and extracellular domains. Science. 1993 Apr 23;260(5107):541–544. doi: 10.1126/science.8475386. [DOI] [PubMed] [Google Scholar]
  45. Xu H., Littman D. R. A kinase-independent function of Lck in potentiating antigen-specific T cell activation. Cell. 1993 Aug 27;74(4):633–643. doi: 10.1016/0092-8674(93)90511-n. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES