Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Feb 1;183(2):463–471. doi: 10.1084/jem.183.2.463

Biochemical pathways of apoptosis: nicotinamide adenine dinucleotide- deficient cells are resistant to tumor necrosis factor or ultraviolet light activation of the 24-kD apoptotic protease and DNA fragmentation

PMCID: PMC2192452  PMID: 8627159

Abstract

The function of nicotinamide adenine dinucleotide (NAD) and adenosine diphosphate (ADP) ribosylation reactions in the mechanism of apoptotic cell death is controversial, although one theory postulates an essential role for NAD depletion by poly-ADP-ribose polymerase. The present study examined the role of intracellular NAD in tumor necrosis factor (TNF) and ultraviolet (UV) light-induced activation of the 24-kD apoptotic protease (AP24) leading to internucleosomal DNA fragmentation and death. Our results demonstrate that nutritional depletion of NAD to undetectable levels in two leukemia lines (U937 and HL-60) renders them completely resistant to apoptosis. This was attributed to a block in the activation of AP24 and subsequent DNA cleavage. Normal cells show an elevation of ADP-ribosyl transferase (ADPRT) in both the cytosol and nucleus after exposure to TNF, but before DNA fragmentation. ADPRT activity as well as cell death was suppressed by an inhibitor specific for mono-ADPRT. Nuclei from NAD-depleted cells were still sensitive to DNA fragmentation induced by exogenous AP24, indicating a selective function for NAD upstream of AP24 activation in the apoptotic pathway. We confirmed a requirement for intracellular NAD, activation of ADPRT, and subsequent NAD depletion during apoptosis in KG1a, YAC-1, and BW1547 leukemia cell lines. However, this mechanism is not universal, since BJAB and Jurkat leukemia cells underwent apoptosis normally, even in the absence of detectable intracellular NAD. We conclude that TNF or UV light-induced apoptotic cell death is not due to NAD depletion in some leukemia cell lines. Rather, NAD-dependent reactions which may involve mono-ADPRT, function in signal transduction leading to activation of AP24, with subsequent DNA fragmentation and cell death.

Full Text

The Full Text of this article is available as a PDF (928.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal S., Drysdale B. E., Shin H. S. Tumor necrosis factor-mediated cytotoxicity involves ADP-ribosylation. J Immunol. 1988 Jun 15;140(12):4187–4192. [PubMed] [Google Scholar]
  2. Bedi A., Pasricha P. J., Akhtar A. J., Barber J. P., Bedi G. C., Giardiello F. M., Zehnbauer B. A., Hamilton S. R., Jones R. J. Inhibition of apoptosis during development of colorectal cancer. Cancer Res. 1995 May 1;55(9):1811–1816. [PubMed] [Google Scholar]
  3. Berger N. A. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res. 1985 Jan;101(1):4–15. [PubMed] [Google Scholar]
  4. Carson D. A., Seto S., Wasson D. B., Carrera C. J. DNA strand breaks, NAD metabolism, and programmed cell death. Exp Cell Res. 1986 Jun;164(2):273–281. doi: 10.1016/0014-4827(86)90028-5. [DOI] [PubMed] [Google Scholar]
  5. Carson D. A., Seto S., Wasson D. B. Lymphocyte dysfunction after DNA damage by toxic oxygen species. A model of immunodeficiency. J Exp Med. 1986 Mar 1;163(3):746–751. doi: 10.1084/jem.163.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Durkacz B. W., Omidiji O., Gray D. A., Shall S. (ADP-ribose)n participates in DNA excision repair. Nature. 1980 Feb 7;283(5747):593–596. doi: 10.1038/283593a0. [DOI] [PubMed] [Google Scholar]
  7. Gerschenson L. E., Rotello R. J. Apoptosis: a different type of cell death. FASEB J. 1992 Apr;6(7):2450–2455. doi: 10.1096/fasebj.6.7.1563596. [DOI] [PubMed] [Google Scholar]
  8. Kinder D. H., Elstad C. A., Meadows G. G., Ames M. M. Antimetastatic activity of boro-amino acid analog protease inhibitors against B16BL6 melanoma in vivo. Invasion Metastasis. 1992;12(5-6):309–319. [PubMed] [Google Scholar]
  9. Kinder D. H., Katzenellenbogen J. A. Acylamino boronic acids and difluoroborane analogues of amino acids: potent inhibitors of chymotrypsin and elastase. J Med Chem. 1985 Dec;28(12):1917–1925. doi: 10.1021/jm00150a027. [DOI] [PubMed] [Google Scholar]
  10. Lichtenstein A., Gera J. F., Andrews J., Berenson J., Ware C. F. Inhibitors of ADP-ribose polymerase decrease the resistance of HER2/neu-expressing cancer cells to the cytotoxic effects of tumor necrosis factor. J Immunol. 1991 Mar 15;146(6):2052–2058. [PubMed] [Google Scholar]
  11. Loesberg C., van Rooij H., Smets L. A. Meta-iodobenzylguanidine (MIBG), a novel high-affinity substrate for cholera toxin that interferes with cellular mono(ADP-ribosylation). Biochim Biophys Acta. 1990 Jan 19;1037(1):92–99. doi: 10.1016/0167-4838(90)90106-p. [DOI] [PubMed] [Google Scholar]
  12. Nelipovich P. A., Nikonova L. V., Umansky S. R. Inhibition of poly(ADP-ribose) polymerase as a possible reason for activation of Ca2+/Mg2+-dependent endonuclease in thymocytes of irradiated rats. Int J Radiat Biol Relat Stud Phys Chem Med. 1988 May;53(5):749–765. doi: 10.1080/09553008814551111. [DOI] [PubMed] [Google Scholar]
  13. Nosseri C., Coppola S., Ghibelli L. Possible involvement of poly(ADP-ribosyl) polymerase in triggering stress-induced apoptosis. Exp Cell Res. 1994 Jun;212(2):367–373. doi: 10.1006/excr.1994.1156. [DOI] [PubMed] [Google Scholar]
  14. Penning L. C., Lagerberg J. W., VanDierendonck J. H., Cornelisse C. J., Dubbelman T. M., VanSteveninck J. The role of DNA damage and inhibition of poly(ADP-ribosyl)ation in loss of clonogenicity of murine L929 fibroblasts, caused by photodynamically induced oxidative stress. Cancer Res. 1994 Nov 1;54(21):5561–5567. [PubMed] [Google Scholar]
  15. Schraufstatter I. U., Hyslop P. A., Hinshaw D. B., Spragg R. G., Sklar L. A., Cochrane C. G. Hydrogen peroxide-induced injury of cells and its prevention by inhibitors of poly(ADP-ribose) polymerase. Proc Natl Acad Sci U S A. 1986 Jul;83(13):4908–4912. doi: 10.1073/pnas.83.13.4908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schulze-Osthoff K., Krammer P. H., Dröge W. Divergent signalling via APO-1/Fas and the TNF receptor, two homologous molecules involved in physiological cell death. EMBO J. 1994 Oct 3;13(19):4587–4596. doi: 10.1002/j.1460-2075.1994.tb06780.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Schwartz J. P., Passonneau J. V., Johnson G. S., Pastan I. The effect of growth conditions on NAD+ and NADH concentrations and the NAD+:NADH ratio in normal and transformed fibroblasts. J Biol Chem. 1974 Jul 10;249(13):4138–4143. [PubMed] [Google Scholar]
  18. Seto S., Carrera C. J., Kubota M., Wasson D. B., Carson D. A. Mechanism of deoxyadenosine and 2-chlorodeoxyadenosine toxicity to nondividing human lymphocytes. J Clin Invest. 1985 Feb;75(2):377–383. doi: 10.1172/JCI111710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tanizawa A., Kubota M., Hashimoto H., Shimizu T., Takimoto T., Kitoh T., Akiyama Y., Mikawa H. VP-16-induced nucleotide pool changes and poly(ADP-ribose) synthesis: the role of VP-16 in interphase death. Exp Cell Res. 1989 Nov;185(1):237–246. doi: 10.1016/0014-4827(89)90052-9. [DOI] [PubMed] [Google Scholar]
  20. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  21. Walker N. I., Harmon B. V., Gobé G. C., Kerr J. F. Patterns of cell death. Methods Achiev Exp Pathol. 1988;13:18–54. [PubMed] [Google Scholar]
  22. Wielckens K., Delfs T. Glucocorticoid-induced cell death and poly[adenosine diphosphate(ADP)-ribosyl]ation: increased toxicity of dexamethasone on mouse S49.1 lymphoma cells with the poly(ADP-ribosyl)ation inhibitor benzamide. Endocrinology. 1986 Nov;119(5):2383–2392. doi: 10.1210/endo-119-5-2383. [DOI] [PubMed] [Google Scholar]
  23. Wong G. H., Goeddel D. V. Fas antigen and p55 TNF receptor signal apoptosis through distinct pathways. J Immunol. 1994 Feb 15;152(4):1751–1755. [PubMed] [Google Scholar]
  24. Wright S. C., Kumar P., Tam A. W., Shen N., Varma M., Larrick J. W. Apoptosis and DNA fragmentation precede TNF-induced cytolysis in U937 cells. J Cell Biochem. 1992 Apr;48(4):344–355. doi: 10.1002/jcb.240480403. [DOI] [PubMed] [Google Scholar]
  25. Wright S. C., Wei Q. S., Zhong J., Zheng H., Kinder D. H., Larrick J. W. Purification of a 24-kD protease from apoptotic tumor cells that activates DNA fragmentation. J Exp Med. 1994 Dec 1;180(6):2113–2123. doi: 10.1084/jem.180.6.2113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Wright S. C., Zhong J., Larrick J. W. Inhibition of apoptosis as a mechanism of tumor promotion. FASEB J. 1994 Jun;8(9):654–660. doi: 10.1096/fasebj.8.9.8005393. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES