Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1367–1375. doi: 10.1084/jem.183.4.1367

Visualization, characterization, and turnover of CD8+ memory T cells in virus-infected hosts

PMCID: PMC2192476  PMID: 8666895

Abstract

The cellular basis of T cell memory is a controversial issue and progress has been hampered by the inability to induce and to trace long- term memory T cells specific for a defined antigen in vivo. By using the murine model of lymphocytic choriomeningitis virus (LCMV) infection and an adoptive transfer system with CD8+ T cells from transgenic mice expressing an LCMV-specific T cell receptor, a population of authentic memory T cells specific for LCMV was generated and analyzed in vivo. The transgenic T cells that have expanded (1,000-fold) and then decreased (10-fold) in LCMV-infected C57BL/6 recipient mice exhibited the following characteristics: they were (a) of larger average cell size than their naive counterparts but smaller than day 8 effector cells; (b) heterogeneous with respect to expression of cell surface "memory" markers; and (c) directly cytolytic when isolated from recipient spleens. The time-dependent proliferative activity of these LCMV-specific memory T cells was analyzed in the recipients by bromodeoxyuridine labeling experiments in vivo. The experiments revealed that LCMV-specific CD8+ memory T cells can persist in LCMV- immune mice for extended periods of time (>2 mo) in the absence of cell division; the memory population as a whole survived beyond 11 mo.

Full Text

The Full Text of this article is available as a PDF (917.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allouche M., Owen J. A., Doherty P. C. Limit-dilution analysis of weak influenza-immune T cell responses associated with H-2Kb and H-2Db. J Immunol. 1982 Aug;129(2):689–693. [PubMed] [Google Scholar]
  2. Baron J. L., Madri J. A., Ruddle N. H., Hashim G., Janeway C. A., Jr Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J Exp Med. 1993 Jan 1;177(1):57–68. doi: 10.1084/jem.177.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Battegay M., Cooper S., Althage A., Bänziger J., Hengartner H., Zinkernagel R. M. Quantification of lymphocytic choriomeningitis virus with an immunological focus assay in 24- or 96-well plates. J Virol Methods. 1991 Jun;33(1-2):191–198. doi: 10.1016/0166-0934(91)90018-u. [DOI] [PubMed] [Google Scholar]
  4. Bell E. B., Sparshott S. M. Interconversion of CD45R subsets of CD4 T cells in vivo. Nature. 1990 Nov 8;348(6297):163–166. doi: 10.1038/348163a0. [DOI] [PubMed] [Google Scholar]
  5. Bradley L. M., Croft M., Swain S. L. T-cell memory: new perspectives. Immunol Today. 1993 May;14(5):197–199. doi: 10.1016/0167-5699(93)90161-D. [DOI] [PubMed] [Google Scholar]
  6. Bruno L., Kirberg J., von Boehmer H. On the cellular basis of immunological T cell memory. Immunity. 1995 Jan;2(1):37–43. doi: 10.1016/1074-7613(95)90077-2. [DOI] [PubMed] [Google Scholar]
  7. Budd R. C., Cerottini J. C., MacDonald H. R. Selectively increased production of interferon-gamma by subsets of Lyt-2+ and L3T4+ T cells identified by expression of Pgp-1. J Immunol. 1987 Jun 1;138(11):3583–3586. [PubMed] [Google Scholar]
  8. Byrne J. A., Butler J. L., Cooper M. D. Differential activation requirements for virgin and memory T cells. J Immunol. 1988 Nov 15;141(10):3249–3257. [PubMed] [Google Scholar]
  9. Celada F. The cellular basis of immunologic memory. Prog Allergy. 1971;15:223–267. [PubMed] [Google Scholar]
  10. Cerottini J. C., MacDonald H. R. The cellular basis of T-cell memory. Annu Rev Immunol. 1989;7:77–89. doi: 10.1146/annurev.iy.07.040189.000453. [DOI] [PubMed] [Google Scholar]
  11. Christensen J. P., Andersson E. C., Scheynius A., Marker O., Thomsen A. R. Alpha 4 integrin directs virus-activated CD8+ T cells to sites of infection. J Immunol. 1995 May 15;154(10):5293–5301. [PubMed] [Google Scholar]
  12. Constant S., Zain M., West J., Pasqualini T., Ranney P., Bottomly K. Are primed CD4+ T lymphocytes different from unprimed cells? Eur J Immunol. 1994 May;24(5):1073–1079. doi: 10.1002/eji.1830240510. [DOI] [PubMed] [Google Scholar]
  13. Croft M., Bradley L. M., Swain S. L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J Immunol. 1994 Mar 15;152(6):2675–2685. [PubMed] [Google Scholar]
  14. Ehlers S., Smith K. A. Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J Exp Med. 1991 Jan 1;173(1):25–36. doi: 10.1084/jem.173.1.25. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Farber D. L., Luqman M., Acuto O., Bottomly K. Control of memory CD4 T cell activation: MHC class II molecules on APCs and CD4 ligation inhibit memory but not naive CD4 T cells. Immunity. 1995 Mar;2(3):249–259. doi: 10.1016/1074-7613(95)90049-7. [DOI] [PubMed] [Google Scholar]
  16. Fuchs E. J., Matzinger P. B cells turn off virgin but not memory T cells. Science. 1992 Nov 13;258(5085):1156–1159. doi: 10.1126/science.1439825. [DOI] [PubMed] [Google Scholar]
  17. Gray D., Matzinger P. T cell memory is short-lived in the absence of antigen. J Exp Med. 1991 Nov 1;174(5):969–974. doi: 10.1084/jem.174.5.969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hou S., Hyland L., Ryan K. W., Portner A., Doherty P. C. Virus-specific CD8+ T-cell memory determined by clonal burst size. Nature. 1994 Jun 23;369(6482):652–654. doi: 10.1038/369652a0. [DOI] [PubMed] [Google Scholar]
  19. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  20. Inaba K., Steinman R. M. Resting and sensitized T lymphocytes exhibit distinct stimulatory (antigen-presenting cell) requirements for growth and lymphokine release. J Exp Med. 1984 Dec 1;160(6):1717–1735. doi: 10.1084/jem.160.6.1717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kearney E. R., Pape K. A., Loh D. Y., Jenkins M. K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo. Immunity. 1994 Jul;1(4):327–339. doi: 10.1016/1074-7613(94)90084-1. [DOI] [PubMed] [Google Scholar]
  22. Kyburz D., Aichele P., Speiser D. E., Hengartner H., Zinkernagel R. M., Pircher H. T cell immunity after a viral infection versus T cell tolerance induced by soluble viral peptides. Eur J Immunol. 1993 Aug;23(8):1956–1962. doi: 10.1002/eji.1830230834. [DOI] [PubMed] [Google Scholar]
  23. Lau L. L., Jamieson B. D., Somasundaram T., Ahmed R. Cytotoxic T-cell memory without antigen. Nature. 1994 Jun 23;369(6482):648–652. doi: 10.1038/369648a0. [DOI] [PubMed] [Google Scholar]
  24. Lee W. T., Yin X. M., Vitetta E. S. Functional and ontogenetic analysis of murine CD45Rhi and CD45Rlo CD4+ T cells. J Immunol. 1990 May 1;144(9):3288–3295. [PubMed] [Google Scholar]
  25. Luqman M., Bottomly K. Activation requirements for CD4+ T cells differing in CD45R expression. J Immunol. 1992 Oct 1;149(7):2300–2306. [PubMed] [Google Scholar]
  26. Mackay C. R. Immunological memory. Adv Immunol. 1993;53:217–265. doi: 10.1016/s0065-2776(08)60501-5. [DOI] [PubMed] [Google Scholar]
  27. McFarland H. I., Nahill S. R., Maciaszek J. W., Welsh R. M. CD11b (Mac-1): a marker for CD8+ cytotoxic T cell activation and memory in virus infection. J Immunol. 1992 Aug 15;149(4):1326–1333. [PubMed] [Google Scholar]
  28. McHeyzer-Williams M. G., Davis M. M. Antigen-specific development of primary and memory T cells in vivo. Science. 1995 Apr 7;268(5207):106–111. doi: 10.1126/science.7535476. [DOI] [PubMed] [Google Scholar]
  29. McKnight A. J., Perez V. L., Shea C. M., Gray G. S., Abbas A. K. Costimulator dependence of lymphokine secretion by naive and activated CD4+ T lymphocytes from TCR transgenic mice. J Immunol. 1994 Jun 1;152(11):5220–5225. [PubMed] [Google Scholar]
  30. Michie C. A., McLean A., Alcock C., Beverley P. C. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature. 1992 Nov 19;360(6401):264–265. doi: 10.1038/360264a0. [DOI] [PubMed] [Google Scholar]
  31. Moskophidis D., Assmann-Wischer U., Simon M. M., Lehmann-Grube F. The immune response of the mouse to lymphocytic choriomeningitis virus. V. High numbers of cytolytic T lymphocytes are generated in the spleen during acute infection. Eur J Immunol. 1987 Jul;17(7):937–942. doi: 10.1002/eji.1830170707. [DOI] [PubMed] [Google Scholar]
  32. Müllbacher A. The long-term maintenance of cytotoxic T cell memory does not require persistence of antigen. J Exp Med. 1994 Jan 1;179(1):317–321. doi: 10.1084/jem.179.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Oehen S., Waldner H., Kündig T. M., Hengartner H., Zinkernagel R. M. Antivirally protective cytotoxic T cell memory to lymphocytic choriomeningitis virus is governed by persisting antigen. J Exp Med. 1992 Nov 1;176(5):1273–1281. doi: 10.1084/jem.176.5.1273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Razvi E. S., Welsh R. M., McFarland H. I. In vivo state of antiviral CTL precursors. Characterization of a cycling cell population containing CTL precursors in immune mice. J Immunol. 1995 Jan 15;154(2):620–632. [PubMed] [Google Scholar]
  35. Salmon M., Kitas G. D., Bacon P. A. Production of lymphokine mRNA by CD45R+ and CD45R- helper T cells from human peripheral blood and by human CD4+ T cell clones. J Immunol. 1989 Aug 1;143(3):907–912. [PubMed] [Google Scholar]
  36. Sanders M. E., Makgoba M. W., June C. H., Young H. A., Shaw S. Enhanced responsiveness of human memory T cells to CD2 and CD3 receptor-mediated activation. Eur J Immunol. 1989 May;19(5):803–808. doi: 10.1002/eji.1830190504. [DOI] [PubMed] [Google Scholar]
  37. Sanders M. E., Makgoba M. W., Sharrow S. O., Stephany D., Springer T. A., Young H. A., Shaw S. Human memory T lymphocytes express increased levels of three cell adhesion molecules (LFA-3, CD2, and LFA-1) and three other molecules (UCHL1, CDw29, and Pgp-1) and have enhanced IFN-gamma production. J Immunol. 1988 Mar 1;140(5):1401–1407. [PubMed] [Google Scholar]
  38. Sanders M. E., Makgoba M. W., Shaw S. Human naive and memory T cells: reinterpretation of helper-inducer and suppressor-inducer subsets. Immunol Today. 1988 Jul-Aug;9(7-8):195–199. doi: 10.1016/0167-5699(88)91212-1. [DOI] [PubMed] [Google Scholar]
  39. Schittek B., Rajewsky K. Maintenance of B-cell memory by long-lived cells generated from proliferating precursors. Nature. 1990 Aug 23;346(6286):749–751. doi: 10.1038/346749a0. [DOI] [PubMed] [Google Scholar]
  40. Selin L. K., Nahill S. R., Welsh R. M. Cross-reactivities in memory cytotoxic T lymphocyte recognition of heterologous viruses. J Exp Med. 1994 Jun 1;179(6):1933–1943. doi: 10.1084/jem.179.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Springer T. A. Adhesion receptors of the immune system. Nature. 1990 Aug 2;346(6283):425–434. doi: 10.1038/346425a0. [DOI] [PubMed] [Google Scholar]
  42. Swain S. L. Generation and in vivo persistence of polarized Th1 and Th2 memory cells. Immunity. 1994 Oct;1(7):543–552. doi: 10.1016/1074-7613(94)90044-2. [DOI] [PubMed] [Google Scholar]
  43. Tough D. F., Sprent J. Turnover of naive- and memory-phenotype T cells. J Exp Med. 1994 Apr 1;179(4):1127–1135. doi: 10.1084/jem.179.4.1127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Tripp R. A., Hou S., Doherty P. C. Temporal loss of the activated L-selectin-low phenotype for virus-specific CD8+ memory T cells. J Immunol. 1995 Jun 1;154(11):5870–5875. [PubMed] [Google Scholar]
  45. Van de Velde H., Lorré K., Bakkus M., Thielemans K., Ceuppens J. L., de Boer M. CD45RO+ memory T cells but not CD45RA+ naive T cells can be efficiently activated by remote co-stimulation with B7. Int Immunol. 1993 Nov;5(11):1483–1487. doi: 10.1093/intimm/5.11.1483. [DOI] [PubMed] [Google Scholar]
  46. Zinkernagel R. M., Leist T., Hengartner H., Althage A. Susceptibility to lymphocytic choriomeningitis virus isolates correlates directly with early and high cytotoxic T cell activity, as well as with footpad swelling reaction, and all three are regulated by H-2D. J Exp Med. 1985 Dec 1;162(6):2125–2141. doi: 10.1084/jem.162.6.2125. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES