Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1623–1631. doi: 10.1084/jem.183.4.1623

Rabies superantigen as a Vbeta T-dependent adjuvant

PMCID: PMC2192506  PMID: 8666920

Abstract

Recently we reported evidence that nucleocapsid (NC) of rabies virus is a Vbeta8-specific exogenous superantigen (SAg) in humans and a Vbeta6- specific SAg in BALB/c mice. NC was also found to stimulate rabies vaccination by enhancing the rabies neutralizing antibody response. In this study, we tested the hypothesis that the stimulating effect of NC and its SAg properties are linked. To do this, we studied the effect of rabies SAg on the immune response to an unrelated antigen, the influenza virus, and compared the response in two congenic strains of mice, BALB/c and BALB/D2. BALB/c mice are rabies SAg responsive, whereas BALB/D2 mice are not responsive to SAg activation by rabies NC because they lack the SAg recognition element, the Vbeta6 T cell receptor. In BALB/c mice, coinjection of rabies SAg with inactivated influenza virus resulted in a rapid and long-term increase in (a) the titres of influenza virus-specific antibodies (IgG and IgM), including protective hemagglutination-inhibiting antibodies, (b) antigen-specific proliferation and, (c) IL-2 and IL-4 secretion by lymph node lymphocytes, when compared to mice that received influenza virus only. In contrast, in BALB/D2 mice, neither antibody nor lymphocyte responses were stimulated. Moreover, during establishment of the primary response, the increase in influenza-primed T cells was mainly restricted to those bearing a Vbeta6 TCR. These data establish that rabies SAg can stimulate both T and B cell-specific responses to an unrelated antigen, depending on expression of the SAg target (Vbeta6 T lymphocytes). This is the first report linking NC adjuvant properties with its SAg mechanism.

Full Text

The Full Text of this article is available as a PDF (928.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acha-Orbea H., Held W., Waanders G. A., Shakhov A. N., Scarpellino L., Lees R. K., MacDonald H. R. Exogenous and endogenous mouse mammary tumor virus superantigens. Immunol Rev. 1993 Feb;131:5–25. doi: 10.1111/j.1600-065x.1993.tb01527.x. [DOI] [PubMed] [Google Scholar]
  2. Brocke S., Gaur A., Piercy C., Gautam A., Gijbels K., Fathman C. G., Steinman L. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature. 1993 Oct 14;365(6447):642–644. doi: 10.1038/365642a0. [DOI] [PubMed] [Google Scholar]
  3. Cardell S., Höidén I., Möller G. Manipulation of the superantigen-induced lymphokine response. Selective induction of interleukin-10 or interferon-gamma synthesis in small resting CD4+ T cells. Eur J Immunol. 1993 Feb;23(2):523–529. doi: 10.1002/eji.1830230234. [DOI] [PubMed] [Google Scholar]
  4. Cole B. C., Ahmed E., Araneo B. A., Shelby J., Kamerath C., Wei S., McCall S., Atkin C. L. Immunomodulation in vivo by the Mycoplasma arthritidis superantigen, MAM. Clin Infect Dis. 1993 Aug;17 (Suppl 1):S163–S169. doi: 10.1093/clinids/17.supplement_1.s163. [DOI] [PubMed] [Google Scholar]
  5. Crow M. K., Zagon G., Chu Z., Ravina B., Tumang J. R., Cole B. C., Friedman S. M. Human B cell differentiation induced by microbial superantigens: unselected peripheral blood lymphocytes secrete polyclonal immunoglobulin in response to Mycoplasma arthritidis mitogen. Autoimmunity. 1992;14(1):23–32. doi: 10.3109/08916939309077353. [DOI] [PubMed] [Google Scholar]
  6. Dietzschold B., Wang H. H., Rupprecht C. E., Celis E., Tollis M., Ertl H., Heber-Katz E., Koprowski H. Induction of protective immunity against rabies by immunization with rabies virus ribonucleoprotein. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9165–9169. doi: 10.1073/pnas.84.24.9165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fuleihan R., Mourad W., Geha R. S., Chatila T. Engagement of MHC-class II molecules by staphylococcal exotoxins delivers a comitogenic signal to human B cells. J Immunol. 1991 Mar 1;146(5):1661–1666. [PubMed] [Google Scholar]
  8. Gillis S., Smith K. A. Long term culture of tumour-specific cytotoxic T cells. Nature. 1977 Jul 14;268(5616):154–156. doi: 10.1038/268154a0. [DOI] [PubMed] [Google Scholar]
  9. Heeg K., Gaus H., Griese D., Bendigs S., Miethke T., Wagner H. Superantigen-reactive T cells that display an anergic phenotype in vitro appear functional in vivo. Int Immunol. 1995 Jan;7(1):105–114. doi: 10.1093/intimm/7.1.105. [DOI] [PubMed] [Google Scholar]
  10. Held W., Shakhov A. N., Izui S., Waanders G. A., Scarpellino L., MacDonald H. R., Acha-Orbea H. Superantigen-reactive CD4+ T cells are required to stimulate B cells after infection with mouse mammary tumor virus. J Exp Med. 1993 Feb 1;177(2):359–366. doi: 10.1084/jem.177.2.359. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hooper D. C., Pierard I., Modelska A., Otvos L., Jr, Fu Z. F., Koprowski H., Dietzschold B. Rabies ribonucleocapsid as an oral immunogen and immunological enhancer. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10908–10912. doi: 10.1073/pnas.91.23.10908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lafon M., Lafage M., Martinez-Arends A., Ramirez R., Vuillier F., Charron D., Lotteau V., Scott-Algara D. Evidence for a viral superantigen in humans. Nature. 1992 Aug 6;358(6386):507–510. doi: 10.1038/358507a0. [DOI] [PubMed] [Google Scholar]
  13. Lafon M., Scott-Algara D., Marche P. N., Cazenave P. A., Jouvin-Marche E. Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen. J Exp Med. 1994 Oct 1;180(4):1207–1215. doi: 10.1084/jem.180.4.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lagoo A. S., Lagoo-Deenadayalan S., Lorenz H. M., Byrne J., Barber W. H., Hardy K. J. IL-2, IL-4, and IFN-gamma gene expression versus secretion in superantigen-activated T cells. Distinct requirement for costimulatory signals through adhesion molecules. J Immunol. 1994 Feb 15;152(4):1641–1652. [PubMed] [Google Scholar]
  15. Liu H., Lampe M. A., Iregui M. V., Cantor H. Conventional antigen and superantigen may be coupled to distinct and cooperative T-cell activation pathways. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8705–8709. doi: 10.1073/pnas.88.19.8705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lussow A. R., MacDonald H. R. Differential effects of superantigen-induced "anergy" on priming and effector stages of a T cell-dependent antibody response. Eur J Immunol. 1994 Feb;24(2):445–449. doi: 10.1002/eji.1830240227. [DOI] [PubMed] [Google Scholar]
  17. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
  18. Martinez-Arends A., Astoul E., Lafage M., Lafon M. Activation of human tonsil lymphocytes by rabies virus nucleocapsid superantigen. Clin Immunol Immunopathol. 1995 Nov;77(2):177–184. doi: 10.1006/clin.1995.1141. [DOI] [PubMed] [Google Scholar]
  19. Montaño-Hirose J. A., Lafage M., Lafon M. Measurement of rabies virus N protein in rabies vaccines. Res Virol. 1995 May-Jun;146(3):217–224. doi: 10.1016/0923-2516(96)80582-6. [DOI] [PubMed] [Google Scholar]
  20. Mourad W., Scholl P., Diaz A., Geha R., Chatila T. The staphylococcal toxic shock syndrome toxin 1 triggers B cell proliferation and differentiation via major histocompatibility complex-unrestricted cognate T/B cell interaction. J Exp Med. 1989 Dec 1;170(6):2011–2022. doi: 10.1084/jem.170.6.2011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nagelkerken L., Gollob K. J., Tielemans M., Coffman R. L. Role of transforming growth factor-beta in the preferential induction of T helper cells of type 1 by staphylococcal enterotoxin B. Eur J Immunol. 1993 Sep;23(9):2306–2310. doi: 10.1002/eji.1830230938. [DOI] [PubMed] [Google Scholar]
  22. Pantaleo G., Graziosi C., Fauci A. S. New concepts in the immunopathogenesis of human immunodeficiency virus infection. N Engl J Med. 1993 Feb 4;328(5):327–335. doi: 10.1056/NEJM199302043280508. [DOI] [PubMed] [Google Scholar]
  23. Smith B. G., Johnson H. M. The effect of staphylococcal enterotoxins on the primary in vitro immune response. J Immunol. 1975 Aug;115(2):575–578. [PubMed] [Google Scholar]
  24. Stohl W., Elliott J. E., Linsley P. S. Human T cell-dependent B cell differentiation induced by staphylococcal superantigens. J Immunol. 1994 Jul 1;153(1):117–127. [PubMed] [Google Scholar]
  25. Valensi J. P., Carlson J. R., Van Nest G. A. Systemic cytokine profiles in BALB/c mice immunized with trivalent influenza vaccine containing MF59 oil emulsion and other advanced adjuvants. J Immunol. 1994 Nov 1;153(9):4029–4039. [PubMed] [Google Scholar]
  26. Villacres-Eriksson M., Bergström-Mollaoglu M., Kåberg H., Morein B. Involvement of interleukin-2 and interferon-gamma in the immune response induced by influenza virus iscoms. Scand J Immunol. 1992 Sep;36(3):421–426. doi: 10.1111/j.1365-3083.1992.tb02956.x. [DOI] [PubMed] [Google Scholar]
  27. Wahl C., Miethke T., Heeg K., Wagner H. Clonal deletion as direct consequence of an in vivo T cell response to bacterial superantigen. Eur J Immunol. 1993 May;23(5):1197–1200. doi: 10.1002/eji.1830230536. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES