Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1633–1643. doi: 10.1084/jem.183.4.1633

5(S),15(S)-dihydroxyeicosatetraenoic acid and lipoxin generation in human polymorphonuclear cells: dual specificity of 5-lipoxygenase towards endogenous and exogenous precursors

PMCID: PMC2192510  PMID: 8666921

Abstract

5-Lipoxygenase activation of human blood polymorphonuclear cells (PMN) from asthmatic patients (asthmatics) was studied to investigate whether differences may exist with healthy subjects (controls). The respective cell capacities to produce lipoxins (LXs), leukotrienes, and 5(S), 15(S)-dihydroxyeicosatetraenoic acid [5(S),15(S)-diHETE] were compared under in vitro stimulation by ionophore A23187, with or without exogenous 15(S)-hydroxyeicosatetraenoic acid [15(S)-diHETE]. Eicosanoids were analyzed by elution with an isocratic reverse-phase high performance liquid chromatography system, and their profiles, detected by simultaneous monitoring at 302, 280, and 246 nm, were evaluated on the basis of chromatographic behavior: UV spectral characteristics and coelution with synthetic standards. In the presence of exogenous 15(S)-HETE, human PMN were able to produce LXs and 5(S),15(S)-diHETE, PMN from asthmatics were able to produce 5(S), 5(S),15(S)-diHETE, and LXs from endogenous sources, whereas in the same experimental conditions, no detectable amounts of these compounds were released by PMN from controls. The levels of 5(S),15(S)-diHETE, and LXs biosynthesized from endogenous arachidonic acid were highly correlated. Two different LX patterns were observed involving two possible metabolic pathways: (a) via the intermediate 5,6-epoxytetraene alone for LXs generation from exogenous 15(S)-HETE; and (b) via 5,6- and/or 14,15-epoxytetraenes leading to the formation of an enzyme-bound delocalized carbocation for LXs generation from endogenous arachidonate, respectively. The enhanced 5-lipoxygenase activation of blood PMN from asthmatics and the metabolism of exogenous 15(S)-HETE may reflect a priming induced by various mediators released from environmental cells, and could be considered as a model of transcellular signalization between PMN and endothelial cells.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borgeat P. Biochemistry of the lipoxygenase pathways in neutrophils. Can J Physiol Pharmacol. 1989 Aug;67(8):936–942. doi: 10.1139/y89-147. [DOI] [PubMed] [Google Scholar]
  2. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  3. Brezinski D. A., Serhan C. N. Characterization of lipoxins by combined gas chromatography and electron-capture negative ion chemical ionization mass spectrometry: formation of lipoxin A4 by stimulated human whole blood. Biol Mass Spectrom. 1991 Feb;20(2):45–52. doi: 10.1002/bms.1200200202. [DOI] [PubMed] [Google Scholar]
  4. Cashman J. R., Lambert C., Sigal E. Inhibition of human leukocyte 5-lipoxygenase by 15-HPETE and related eicosanoids. Biochem Biophys Res Commun. 1988 Aug 30;155(1):38–44. doi: 10.1016/s0006-291x(88)81046-5. [DOI] [PubMed] [Google Scholar]
  5. Chavis C., Chanez P., Vachier I., Bousquet J., Michel F. B., Godard P. 5-15-diHETE and lipoxins generated by neutrophils from endogenous arachidonic acid as asthma biomarkers. Biochem Biophys Res Commun. 1995 Feb 6;207(1):273–279. doi: 10.1006/bbrc.1995.1183. [DOI] [PubMed] [Google Scholar]
  6. Dixon R. A., Diehl R. E., Opas E., Rands E., Vickers P. J., Evans J. F., Gillard J. W., Miller D. K. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990 Jan 18;343(6255):282–284. doi: 10.1038/343282a0. [DOI] [PubMed] [Google Scholar]
  7. Edenius C., Haeggström J., Lindgren J. A. Transcellular conversion of endogenous arachidonic acid to lipoxins in mixed human platelet-granulocyte suspensions. Biochem Biophys Res Commun. 1988 Dec 15;157(2):801–807. doi: 10.1016/s0006-291x(88)80320-6. [DOI] [PubMed] [Google Scholar]
  8. Edenius C., Kumlin M., Björk T., Anggård A., Lindgren J. A. Lipoxin formation in human nasal polyps and bronchial tissue. FEBS Lett. 1990 Oct 15;272(1-2):25–28. doi: 10.1016/0014-5793(90)80440-t. [DOI] [PubMed] [Google Scholar]
  9. Edenius C., Tornhamre S., Lindgren J. A. Stimulation of lipoxin synthesis from leukotriene A4 by endogenously formed 12-hydroperoxyeicosatetraenoic acid in activated human platelets. Biochim Biophys Acta. 1994 Jan 20;1210(3):361–367. doi: 10.1016/0005-2760(94)90241-0. [DOI] [PubMed] [Google Scholar]
  10. Fiore S., Serhan C. N. Formation of lipoxins and leukotrienes during receptor-mediated interactions of human platelets and recombinant human granulocyte/macrophage colony-stimulating factor-primed neutrophils. J Exp Med. 1990 Nov 1;172(5):1451–1457. doi: 10.1084/jem.172.5.1451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gadaleta D., Davis J. M. Pulmonary failure and the production of leukotrienes. J Am Coll Surg. 1994 Mar;178(3):309–319. [PubMed] [Google Scholar]
  12. Hunter J. A., Finkbeiner W. E., Nadel J. A., Goetzl E. J., Holtzman M. J. Predominant generation of 15-lipoxygenase metabolites of arachidonic acid by epithelial cells from human trachea. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4633–4637. doi: 10.1073/pnas.82.14.4633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim S. J. Elevated formation of lipoxins in viral antibody-positive rat alveolar macrophages. Am J Respir Cell Mol Biol. 1990 Aug;3(2):113–118. doi: 10.1165/ajrcmb/3.2.113. [DOI] [PubMed] [Google Scholar]
  14. Kim S. J. Formation of lipoxins by alveolar macrophages. Biochem Biophys Res Commun. 1988 Jan 29;150(2):870–876. doi: 10.1016/0006-291x(88)90473-1. [DOI] [PubMed] [Google Scholar]
  15. Kim S. J. Lipoxins formation by rat basophilic leukemia (RBL-1) cells. Res Commun Chem Pathol Pharmacol. 1990 May;68(2):159–174. [PubMed] [Google Scholar]
  16. Lee T. H., Crea A. E., Gant V., Spur B. W., Marron B. E., Nicolaou K. C., Reardon E., Brezinski M., Serhan C. N. Identification of lipoxin A4 and its relationship to the sulfidopeptide leukotrienes C4, D4, and E4 in the bronchoalveolar lavage fluids obtained from patients with selected pulmonary diseases. Am Rev Respir Dis. 1990 Jun;141(6):1453–1458. doi: 10.1164/ajrccm/141.6.1453. [DOI] [PubMed] [Google Scholar]
  17. Leroux J. L., Damon M., Chavis C., Crastes de Paulet A., Blotman F. Effects of a single dose of methotrexate on 5- and 12-lipoxygenase products in patients with rheumatoid arthritis. J Rheumatol. 1992 Jun;19(6):863–866. [PubMed] [Google Scholar]
  18. Levy B. D., Romano M., Chapman H. A., Reilly J. J., Drazen J., Serhan C. N. Human alveolar macrophages have 15-lipoxygenase and generate 15(S)-hydroxy-5,8,11-cis-13-trans-eicosatetraenoic acid and lipoxins. J Clin Invest. 1993 Sep;92(3):1572–1579. doi: 10.1172/JCI116738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maas R. L., Turk J., Oates J. A., Brash A. R. Formation of a novel dihydroxy acid from arachidonic acid by lipoxygenase-catalyzed double oxygenation in rat mononuclear cells and human leukocytes. J Biol Chem. 1982 Jun 25;257(12):7056–7067. [PubMed] [Google Scholar]
  20. Maclouf J. A., Murphy R. C. Transcellular metabolism of neutrophil-derived leukotriene A4 by human platelets. A potential cellular source of leukotriene C4. J Biol Chem. 1988 Jan 5;263(1):174–181. [PubMed] [Google Scholar]
  21. Marcus A. J., Hajjar D. P. Vascular transcellular signaling. J Lipid Res. 1993 Dec;34(12):2017–2031. [PubMed] [Google Scholar]
  22. Matuschak G. M., Mattingly M. E., Tredway T. L., Lechner A. J. Liver-lung interactions during E. coli endotoxemia. TNF-alpha:leukotriene axis. Am J Respir Crit Care Med. 1994 Jan;149(1):41–49. doi: 10.1164/ajrccm.149.1.8111596. [DOI] [PubMed] [Google Scholar]
  23. Nichols R. C., Vanderhoek J. Y. 5-Hydroxyeicosanoids selectively stimulate the human neutrophil 15-lipoxygenase to use endogenous substrate. J Exp Med. 1990 Feb 1;171(2):367–375. doi: 10.1084/jem.171.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nicolaou K. C., Marron B. E., Veale C. A., Webber S. E., Dahlén S. E., Samuelsson B., Serhan C. N. Identification of a novel 7-cis-11-trans-lipoxin A4 generated by human neutrophils: total synthesis, spasmogenic activities and comparison with other geometric isomers of lipoxins A4 and B4. Biochim Biophys Acta. 1989 May 15;1003(1):44–53. doi: 10.1016/0005-2760(89)90096-9. [DOI] [PubMed] [Google Scholar]
  25. Palmblad J., Lerner R., Larsson S. H. Signal transduction mechanisms for leukotriene B4 induced hyperadhesiveness of endothelial cells for neutrophils. J Immunol. 1994 Jan 1;152(1):262–269. [PubMed] [Google Scholar]
  26. Palmblad J., Lindström P., Lerner R. Leukotriene B4 induced hyperadhesiveness of endothelial cells for neutrophils. Biochem Biophys Res Commun. 1990 Jan 30;166(2):848–851. doi: 10.1016/0006-291x(90)90887-s. [DOI] [PubMed] [Google Scholar]
  27. Radeau T., Chavis C., Damon M., Michel F. B., Crastes de Paulet A., Godard P. H. Enhanced arachidonic acid metabolism and human neutrophil migration in asthma. Prostaglandins Leukot Essent Fatty Acids. 1990 Oct;41(2):131–138. doi: 10.1016/0952-3278(90)90066-t. [DOI] [PubMed] [Google Scholar]
  28. Radeau T., Chavis C., Godard P. H., Michel F. B., Crastes de Paulet A., Damon M. Arachidonate 5-lipoxygenase metabolism in human neutrophils from patients with asthma: in vitro effect of nedocromil sodium. Int Arch Allergy Immunol. 1992;97(3):209–215. doi: 10.1159/000236121. [DOI] [PubMed] [Google Scholar]
  29. Radeau T., Godard P., Chavis C., Crastes de Paulet A., Damon M. Enhanced esterification process of 5-hydroxyeicosatetraenoic acid (5-HETE) in PMN from asthmatic patients. Prostaglandins. 1992 Jun;43(6):583–594. doi: 10.1016/0090-6980(92)90118-d. [DOI] [PubMed] [Google Scholar]
  30. Roberts R. L., Gallin J. I. Rapid method for isolation of normal human peripheral blood eosinophils on discontinuous Percoll gradients and comparison with neutrophils. Blood. 1985 Feb;65(2):433–440. [PubMed] [Google Scholar]
  31. Rokach J., Fitzsimmons B. The lipoxins. Int J Biochem. 1988;20(8):753–758. doi: 10.1016/0020-711x(88)90060-2. [DOI] [PubMed] [Google Scholar]
  32. Romano M., Chen X. S., Takahashi Y., Yamamoto S., Funk C. D., Serhan C. N. Lipoxin synthase activity of human platelet 12-lipoxygenase. Biochem J. 1993 Nov 15;296(Pt 1):127–133. doi: 10.1042/bj2960127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Romano M., Serhan C. N. Lipoxin generation by permeabilized human platelets. Biochemistry. 1992 Sep 8;31(35):8269–8277. doi: 10.1021/bi00150a021. [DOI] [PubMed] [Google Scholar]
  34. Rouzer C. A., Matsumoto T., Samuelsson B. Single protein from human leukocytes possesses 5-lipoxygenase and leukotriene A4 synthase activities. Proc Natl Acad Sci U S A. 1986 Feb;83(4):857–861. doi: 10.1073/pnas.83.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Rowley A. F. Lipoxin formation in fish leucocytes. Biochim Biophys Acta. 1991 Jul 30;1084(3):303–306. doi: 10.1016/0005-2760(91)90073-q. [DOI] [PubMed] [Google Scholar]
  36. Rowley A. F., Lloyd-Evans P., Barrow S. E., Serhan C. N. Lipoxin biosynthesis by trout macrophages involves the formation of epoxide intermediates. Biochemistry. 1994 Feb 1;33(4):856–863. doi: 10.1021/bi00170a002. [DOI] [PubMed] [Google Scholar]
  37. Sampson A. P., Evans J. M., Garland L. G., Piper P. J., Costello J. F. The generation and metabolism of leukotrienes in the ionophore-stimulated blood of normal and asthmatic subjects. Pulm Pharmacol. 1990;3(3):111–119. doi: 10.1016/0952-0600(90)90041-g. [DOI] [PubMed] [Google Scholar]
  38. Sampson A. P., Thomas R. U., Costello J. F., Piper P. J. Enhanced leukotriene synthesis in leukocytes of atopic and asthmatic subjects. Br J Clin Pharmacol. 1992 Apr;33(4):423–430. doi: 10.1111/j.1365-2125.1992.tb04062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  40. Serhan C. N., Hamberg M., Samuelsson B., Morris J., Wishka D. G. On the stereochemistry and biosynthesis of lipoxin B. Proc Natl Acad Sci U S A. 1986 Apr;83(7):1983–1987. doi: 10.1073/pnas.83.7.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Serhan C. N., Hamberg M., Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun. 1984 Feb 14;118(3):943–949. doi: 10.1016/0006-291x(84)91486-4. [DOI] [PubMed] [Google Scholar]
  42. Serhan C. N., Hamberg M., Samuelsson B. Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes. Biochem Biophys Res Commun. 1984 Feb 14;118(3):943–949. doi: 10.1016/0006-291x(84)91486-4. [DOI] [PubMed] [Google Scholar]
  43. Serhan C. N., Hirsch U., Palmblad J., Samuelsson B. Formation of lipoxin A by granulocytes from eosinophilic donors. FEBS Lett. 1987 Jun 15;217(2):242–246. doi: 10.1016/0014-5793(87)80671-3. [DOI] [PubMed] [Google Scholar]
  44. Serhan C. N. Lipoxin biosynthesis and its impact in inflammatory and vascular events. Biochim Biophys Acta. 1994 Apr 14;1212(1):1–25. doi: 10.1016/0005-2760(94)90185-6. [DOI] [PubMed] [Google Scholar]
  45. Serhan C. N., Nicolaou K. C., Webber S. E., Veale C. A., Dahlén S. E., Puustinen T. J., Samuelsson B. Lipoxin A. Stereochemistry and biosynthesis. J Biol Chem. 1986 Dec 15;261(35):16340–16345. [PubMed] [Google Scholar]
  46. Serhan C. N. On the relationship between leukotriene and lipoxin production by human neutrophils: evidence for differential metabolism of 15-HETE and 5-HETE. Biochim Biophys Acta. 1989 Aug 8;1004(2):158–168. doi: 10.1016/0005-2760(89)90264-6. [DOI] [PubMed] [Google Scholar]
  47. Serhan C. N., Wong P. Y., Samuelsson B. Nomenclature of lipoxins and related compounds derived from arachidonic acid and eicosapentaenoic acid. Prostaglandins. 1987 Aug;34(2):201–204. doi: 10.1016/0090-6980(87)90243-7. [DOI] [PubMed] [Google Scholar]
  48. Sperling R. I., Benincaso A. I., Anderson R. J., Coblyn J. S., Austen K. F., Weinblatt M. E. Acute and chronic suppression of leukotriene B4 synthesis ex vivo in neutrophils from patients with rheumatoid arthritis beginning treatment with methotrexate. Arthritis Rheum. 1992 Apr;35(4):376–384. doi: 10.1002/art.1780350403. [DOI] [PubMed] [Google Scholar]
  49. Stenke L., Mansour M., Edenius C., Reizenstein P., Lindgren J. A. Formation and proliferative effects of lipoxins in human bone marrow. Biochem Biophys Res Commun. 1991 Oct 15;180(1):255–261. doi: 10.1016/s0006-291x(05)81285-9. [DOI] [PubMed] [Google Scholar]
  50. Sud'ina G. F., Galkina S. I., Barsky O. A., Margolis L. B. Adhesive interactions of neutrophils and leukotriene synthesis. FEBS Lett. 1993 Dec 27;336(2):201–204. doi: 10.1016/0014-5793(93)80802-2. [DOI] [PubMed] [Google Scholar]
  51. Tanaka N., Kita T., Kasai K., Nagano T. The immunocytochemical localization of tumour necrosis factor and leukotriene in the rat heart and lung during endotoxin shock. Virchows Arch. 1994;424(3):273–277. doi: 10.1007/BF00194611. [DOI] [PubMed] [Google Scholar]
  52. Tate R. M., Repine J. E. Neutrophils and the adult respiratory distress syndrome. Am Rev Respir Dis. 1983 Sep;128(3):552–559. doi: 10.1164/arrd.1983.128.3.552. [DOI] [PubMed] [Google Scholar]
  53. Thomas E., Leroux J. L., Blotman F., Chavis C. Conversion of endogenous arachidonic acid to 5,15-diHETE and lipoxins by polymorphonuclear cells from patients with rheumatoid arthritis. Inflamm Res. 1995 Mar;44(3):121–124. doi: 10.1007/BF01782022. [DOI] [PubMed] [Google Scholar]
  54. Tonnesen M. G., Anderson D. C., Springer T. A., Knedler A., Avdi N., Henson P. M. Adherence of neutrophils to cultured human microvascular endothelial cells. Stimulation by chemotactic peptides and lipid mediators and dependence upon the Mac-1, LFA-1, p150,95 glycoprotein family. J Clin Invest. 1989 Feb;83(2):637–646. doi: 10.1172/JCI113928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tornhamre S., Gigou A., Edenius C., Lellouche J. P., Lindgren J. A. Conversion of 5,6-dihydroxyeicosatetraenoic acids. A novel pathway for lipoxin formation by human platelets. FEBS Lett. 1992 Jun 8;304(1):78–82. doi: 10.1016/0014-5793(92)80593-6. [DOI] [PubMed] [Google Scholar]
  56. Yamamoto S. "Enzymatic" lipid peroxidation: reactions of mammalian lipoxygenases. Free Radic Biol Med. 1991;10(2):149–159. doi: 10.1016/0891-5849(91)90008-q. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES