Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1533–1544. doi: 10.1084/jem.183.4.1533

Mitochondrial control of nuclear apoptosis

PMCID: PMC2192517  PMID: 8666911

Abstract

Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (delta psi m) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkreik acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro- oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears to be a critical step of the apoptotic cascade.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreeva L., Tanveer A., Crompton M. Evidence for the involvement of a membrane-associated cyclosporin-A-binding protein in the Ca(2+)-activated inner membrane pore of heart mitochondria. Eur J Biochem. 1995 Jun 15;230(3):1125–1132. doi: 10.1111/j.1432-1033.1995.tb20664.x. [DOI] [PubMed] [Google Scholar]
  2. Aten J., Prigent P., Poncet P., Blanpied C., Claessen N., Druet P., Hirsch F. Mercuric chloride-induced programmed cell death of a murine T cell hybridoma. I. Effect of the proto-oncogene Bcl-2. Cell Immunol. 1995 Mar;161(1):98–106. doi: 10.1006/cimm.1995.1013. [DOI] [PubMed] [Google Scholar]
  3. Bernardi P., Broekemeier K. M., Pfeiffer D. R. Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr. 1994 Oct;26(5):509–517. doi: 10.1007/BF00762735. [DOI] [PubMed] [Google Scholar]
  4. Bernardi P., Vassanelli S., Veronese P., Colonna R., Szabó I., Zoratti M. Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem. 1992 Feb 15;267(5):2934–2939. [PubMed] [Google Scholar]
  5. Bernardi P., Veronese P., Petronilli V. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem. 1993 Jan 15;268(2):1005–1010. [PubMed] [Google Scholar]
  6. Boutry M., Briquet M. Mitochondrial modifications associated with the cytoplasmic male sterility in faba beans. Eur J Biochem. 1982 Sep;127(1):129–135. doi: 10.1111/j.1432-1033.1982.tb06846.x. [DOI] [PubMed] [Google Scholar]
  7. Broekemeier K. M., Krebsbach R. J., Pfeiffer D. R. Inhibition of the mitochondrial Ca2+ uniporter by pure and impure ruthenium red. Mol Cell Biochem. 1994 Oct 12;139(1):33–40. doi: 10.1007/BF00944201. [DOI] [PubMed] [Google Scholar]
  8. Castedo M., Macho A., Zamzami N., Hirsch T., Marchetti P., Uriel J., Kroemer G. Mitochondrial perturbations define lymphocytes undergoing apoptotic depletion in vivo. Eur J Immunol. 1995 Dec;25(12):3277–3284. doi: 10.1002/eji.1830251212. [DOI] [PubMed] [Google Scholar]
  9. Costantini P., Chernyak B. V., Petronilli V., Bernardi P. Selective inhibition of the mitochondrial permeability transition pore at the oxidation-reduction sensitive dithiol by monobromobimane. FEBS Lett. 1995 Apr 3;362(2):239–242. doi: 10.1016/0014-5793(95)00256-9. [DOI] [PubMed] [Google Scholar]
  10. Crompton M., Ellinger H., Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988 Oct 1;255(1):357–360. [PMC free article] [PubMed] [Google Scholar]
  11. Deckwerth T. L., Johnson E. M., Jr Temporal analysis of events associated with programmed cell death (apoptosis) of sympathetic neurons deprived of nerve growth factor. J Cell Biol. 1993 Dec;123(5):1207–1222. doi: 10.1083/jcb.123.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ellis R. E., Yuan J. Y., Horvitz H. R. Mechanisms and functions of cell death. Annu Rev Cell Biol. 1991;7:663–698. doi: 10.1146/annurev.cb.07.110191.003311. [DOI] [PubMed] [Google Scholar]
  13. Fang W., Rivard J. J., Mueller D. L., Behrens T. W. Cloning and molecular characterization of mouse bcl-x in B and T lymphocytes. J Immunol. 1994 Nov 15;153(10):4388–4398. [PubMed] [Google Scholar]
  14. Gonzalo J. A., González-García A., Martínez C., Kroemer G. Glucocorticoid-mediated control of the activation and clonal deletion of peripheral T cells in vivo. J Exp Med. 1993 May 1;177(5):1239–1246. doi: 10.1084/jem.177.5.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Green D. R., Mahboubi A., Nishioka W., Oja S., Echeverri F., Shi Y., Glynn J., Yang Y., Ashwell J., Bissonnette R. Promotion and inhibition of activation-induced apoptosis in T-cell hybridomas by oncogenes and related signals. Immunol Rev. 1994 Dec;142:321–342. doi: 10.1111/j.1600-065x.1994.tb00895.x. [DOI] [PubMed] [Google Scholar]
  16. Halestrap A. P., Davidson A. M. Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J. 1990 May 15;268(1):153–160. doi: 10.1042/bj2680153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hengartner M. O., Horvitz H. R. C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell. 1994 Feb 25;76(4):665–676. doi: 10.1016/0092-8674(94)90506-1. [DOI] [PubMed] [Google Scholar]
  18. Hennet T., Richter C., Peterhans E. Tumour necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells. Biochem J. 1993 Jan 15;289(Pt 2):587–592. doi: 10.1042/bj2890587. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hockenbery D. M., Oltvai Z. N., Yin X. M., Milliman C. L., Korsmeyer S. J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell. 1993 Oct 22;75(2):241–251. doi: 10.1016/0092-8674(93)80066-n. [DOI] [PubMed] [Google Scholar]
  20. Igbavboa U., Zwizinski C. W., Pfeiffer D. R. Release of mitochondrial matrix proteins through a Ca2+-requiring, cyclosporin-sensitive pathway. Biochem Biophys Res Commun. 1989 Jun 15;161(2):619–625. doi: 10.1016/0006-291x(89)92644-2. [DOI] [PubMed] [Google Scholar]
  21. Jacobson M. D., Burne J. F., King M. P., Miyashita T., Reed J. C., Raff M. C. Bcl-2 blocks apoptosis in cells lacking mitochondrial DNA. Nature. 1993 Jan 28;361(6410):365–369. doi: 10.1038/361365a0. [DOI] [PubMed] [Google Scholar]
  22. Jacobson M. D., Burne J. F., Raff M. C. Programmed cell death and Bcl-2 protection in the absence of a nucleus. EMBO J. 1994 Apr 15;13(8):1899–1910. doi: 10.1002/j.1460-2075.1994.tb06459.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobson M. D., Raff M. C. Programmed cell death and Bcl-2 protection in very low oxygen. Nature. 1995 Apr 27;374(6525):814–816. doi: 10.1038/374814a0. [DOI] [PubMed] [Google Scholar]
  24. Kane D. J., Sarafian T. A., Anton R., Hahn H., Gralla E. B., Valentine J. S., Ord T., Bredesen D. E. Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science. 1993 Nov 19;262(5137):1274–1277. doi: 10.1126/science.8235659. [DOI] [PubMed] [Google Scholar]
  25. Kawabe Y., Ochi A. Programmed cell death and extrathymic reduction of Vbeta8+ CD4+ T cells in mice tolerant to Staphylococcus aureus enterotoxin B. Nature. 1991 Jan 17;349(6306):245–248. doi: 10.1038/349245a0. [DOI] [PubMed] [Google Scholar]
  26. Klingenberg M. The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J Membr Biol. 1980 Sep 30;56(2):97–105. doi: 10.1007/BF01875961. [DOI] [PubMed] [Google Scholar]
  27. Krajewski S., Tanaka S., Takayama S., Schibler M. J., Fenton W., Reed J. C. Investigation of the subcellular distribution of the bcl-2 oncoprotein: residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993 Oct 1;53(19):4701–4714. [PubMed] [Google Scholar]
  28. Kroemer G., Petit P., Zamzami N., Vayssière J. L., Mignotte B. The biochemistry of programmed cell death. FASEB J. 1995 Oct;9(13):1277–1287. doi: 10.1096/fasebj.9.13.7557017. [DOI] [PubMed] [Google Scholar]
  29. Lazebnik Y. A., Cole S., Cooke C. A., Nelson W. G., Earnshaw W. C. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis. J Cell Biol. 1993 Oct;123(1):7–22. doi: 10.1083/jcb.123.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994 Sep 22;371(6495):346–347. doi: 10.1038/371346a0. [DOI] [PubMed] [Google Scholar]
  31. Leist M., Gantner F., Bohlinger I., Germann P. G., Tiegs G., Wendel A. Murine hepatocyte apoptosis induced in vitro and in vivo by TNF-alpha requires transcriptional arrest. J Immunol. 1994 Aug 15;153(4):1778–1788. [PubMed] [Google Scholar]
  32. Leist M., Gantner F., Bohlinger I., Tiegs G., Germann P. G., Wendel A. Tumor necrosis factor-induced hepatocyte apoptosis precedes liver failure in experimental murine shock models. Am J Pathol. 1995 May;146(5):1220–1234. [PMC free article] [PubMed] [Google Scholar]
  33. Macho A., Castedo M., Marchetti P., Aguilar J. J., Decaudin D., Zamzami N., Girard P. M., Uriel J., Kroemer G. Mitochondrial dysfunctions in circulating T lymphocytes from human immunodeficiency virus-1 carriers. Blood. 1995 Oct 1;86(7):2481–2487. [PubMed] [Google Scholar]
  34. Majima E., Shinohara Y., Yamaguchi N., Hong Y. M., Terada H. Importance of loops of mitochondrial ADP/ATP carrier for its transport activity deduced from reactivities of its cysteine residues with the sulfhydryl reagent eosin-5-maleimide. Biochemistry. 1994 Aug 16;33(32):9530–9536. doi: 10.1021/bi00198a019. [DOI] [PubMed] [Google Scholar]
  35. Martin S. J., Green D. R. Protease activation during apoptosis: death by a thousand cuts? Cell. 1995 Aug 11;82(3):349–352. doi: 10.1016/0092-8674(95)90422-0. [DOI] [PubMed] [Google Scholar]
  36. Martin S. J., Newmeyer D. D., Mathias S., Farschon D. M., Wang H. G., Reed J. C., Kolesnick R. N., Green D. R. Cell-free reconstitution of Fas-, UV radiation- and ceramide-induced apoptosis. EMBO J. 1995 Nov 1;14(21):5191–5200. doi: 10.1002/j.1460-2075.1995.tb00203.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Marty I., Brandolin G., Gagnon J., Brasseur R., Vignais P. V. Topography of the membrane-bound ADP/ATP carrier assessed by enzymatic proteolysis. Biochemistry. 1992 Apr 28;31(16):4058–4065. doi: 10.1021/bi00131a023. [DOI] [PubMed] [Google Scholar]
  38. McEnery M. W., Snowman A. M., Trifiletti R. R., Snyder S. H. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3170–3174. doi: 10.1073/pnas.89.8.3170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mehendale H. M., Roth R. A., Gandolfi A. J., Klaunig J. E., Lemasters J. J., Curtis L. R. Novel mechanisms in chemically induced hepatotoxicity. FASEB J. 1994 Dec;8(15):1285–1295. doi: 10.1096/fasebj.8.15.8001741. [DOI] [PubMed] [Google Scholar]
  40. Nakajima H., Golstein P., Henkart P. A. The target cell nucleus is not required for cell-mediated granzyme- or Fas-based cytotoxicity. J Exp Med. 1995 May 1;181(5):1905–1909. doi: 10.1084/jem.181.5.1905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Newmeyer D. D., Farschon D. M., Reed J. C. Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell. 1994 Oct 21;79(2):353–364. doi: 10.1016/0092-8674(94)90203-8. [DOI] [PubMed] [Google Scholar]
  42. Nguyen M., Branton P. E., Walton P. A., Oltvai Z. N., Korsmeyer S. J., Shore G. C. Role of membrane anchor domain of Bcl-2 in suppression of apoptosis caused by E1B-defective adenovirus. J Biol Chem. 1994 Jun 17;269(24):16521–16524. [PubMed] [Google Scholar]
  43. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  44. Nicoletti I., Migliorati G., Pagliacci M. C., Grignani F., Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods. 1991 Jun 3;139(2):271–279. doi: 10.1016/0022-1759(91)90198-o. [DOI] [PubMed] [Google Scholar]
  45. Oltvai Z. N., Korsmeyer S. J. Checkpoints of dueling dimers foil death wishes. Cell. 1994 Oct 21;79(2):189–192. doi: 10.1016/0092-8674(94)90188-0. [DOI] [PubMed] [Google Scholar]
  46. Palmieri F., Bisaccia F., Capobianco L., Dolce V., Fiermonte G., Iacobazzi V., Zara V. Transmembrane topology, genes, and biogenesis of the mitochondrial phosphate and oxoglutarate carriers. J Bioenerg Biomembr. 1993 Oct;25(5):493–501. doi: 10.1007/BF01108406. [DOI] [PubMed] [Google Scholar]
  47. Pastorino J. G., Snyder J. W., Hoek J. B., Farber J. L. Ca2+ depletion prevents anoxic death of hepatocytes by inhibiting mitochondrial permeability transition. Am J Physiol. 1995 Mar;268(3 Pt 1):C676–C685. doi: 10.1152/ajpcell.1995.268.3.C676. [DOI] [PubMed] [Google Scholar]
  48. Petit P. X., Lecoeur H., Zorn E., Dauguet C., Mignotte B., Gougeon M. L. Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol. 1995 Jul;130(1):157–167. doi: 10.1083/jcb.130.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Petit P. X., O'Connor J. E., Grunwald D., Brown S. C. Analysis of the membrane potential of rat- and mouse-liver mitochondria by flow cytometry and possible applications. Eur J Biochem. 1990 Dec 12;194(2):389–397. doi: 10.1111/j.1432-1033.1990.tb15632.x. [DOI] [PubMed] [Google Scholar]
  50. Petronilli V., Cola C., Bernardi P. Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore. II. The minimal requirements for pore induction underscore a key role for transmembrane electrical potential, matrix pH, and matrix Ca2+. J Biol Chem. 1993 Jan 15;268(2):1011–1016. [PubMed] [Google Scholar]
  51. Petronilli V., Cola C., Massari S., Colonna R., Bernardi P. Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem. 1993 Oct 15;268(29):21939–21945. [PubMed] [Google Scholar]
  52. Petronilli V., Costantini P., Scorrano L., Colonna R., Passamonti S., Bernardi P. The voltage sensor of the mitochondrial permeability transition pore is tuned by the oxidation-reduction state of vicinal thiols. Increase of the gating potential by oxidants and its reversal by reducing agents. J Biol Chem. 1994 Jun 17;269(24):16638–16642. [PubMed] [Google Scholar]
  53. Pfeiffer D. R., Gudz T. I., Novgorodov S. A., Erdahl W. L. The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J Biol Chem. 1995 Mar 3;270(9):4923–4932. doi: 10.1074/jbc.270.9.4923. [DOI] [PubMed] [Google Scholar]
  54. Reed D. J., Savage M. K. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status. Biochim Biophys Acta. 1995 May 24;1271(1):43–50. doi: 10.1016/0925-4439(95)00008-r. [DOI] [PubMed] [Google Scholar]
  55. Schulze-Osthoff K., Walczak H., Dröge W., Krammer P. H. Cell nucleus and DNA fragmentation are not required for apoptosis. J Cell Biol. 1994 Oct;127(1):15–20. doi: 10.1083/jcb.127.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Shimizu S., Eguchi Y., Kosaka H., Kamiike W., Matsuda H., Tsujimoto Y. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature. 1995 Apr 27;374(6525):811–813. doi: 10.1038/374811a0. [DOI] [PubMed] [Google Scholar]
  57. Smets L. A., Van den Berg J., Acton D., Top B., Van Rooij H., Verwijs-Janssen M. BCL-2 expression and mitochondrial activity in leukemic cells with different sensitivity to glucocorticoid-induced apoptosis. Blood. 1994 Sep 1;84(5):1613–1619. [PubMed] [Google Scholar]
  58. Szabó I., Bernardi P., Zoratti M. Modulation of the mitochondrial megachannel by divalent cations and protons. J Biol Chem. 1992 Feb 15;267(5):2940–2946. [PubMed] [Google Scholar]
  59. Tanaka S., Saito K., Reed J. C. Structure-function analysis of the Bcl-2 oncoprotein. Addition of a heterologous transmembrane domain to portions of the Bcl-2 beta protein restores function as a regulator of cell survival. J Biol Chem. 1993 May 25;268(15):10920–10926. [PubMed] [Google Scholar]
  60. Toninello A., Siliprandi D., Siliprandi N. On the mechanism by which Mg2+ and adenine nucleotides restore membrane potential in rat liver mitochondria deenergized by Ca2+ and phosphate. Biochem Biophys Res Commun. 1983 Mar 29;111(3):792–797. doi: 10.1016/0006-291x(83)91368-2. [DOI] [PubMed] [Google Scholar]
  61. Vayssiere J. L., Petit P. X., Risler Y., Mignotte B. Commitment to apoptosis is associated with changes in mitochondrial biogenesis and activity in cell lines conditionally immortalized with simian virus 40. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11752–11756. doi: 10.1073/pnas.91.24.11752. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Walker J. E., Runswick M. J. The mitochondrial transport protein superfamily. J Bioenerg Biomembr. 1993 Oct;25(5):435–446. doi: 10.1007/BF01108401. [DOI] [PubMed] [Google Scholar]
  63. Wood E. R., Earnshaw W. C. Mitotic chromatin condensation in vitro using somatic cell extracts and nuclei with variable levels of endogenous topoisomerase II. J Cell Biol. 1990 Dec;111(6 Pt 2):2839–2850. doi: 10.1083/jcb.111.6.2839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Zamzami N., Marchetti P., Castedo M., Decaudin D., Macho A., Hirsch T., Susin S. A., Petit P. X., Mignotte B., Kroemer G. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J Exp Med. 1995 Aug 1;182(2):367–377. doi: 10.1084/jem.182.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Zamzami N., Marchetti P., Castedo M., Zanin C., Vayssière J. L., Petit P. X., Kroemer G. Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo. J Exp Med. 1995 May 1;181(5):1661–1672. doi: 10.1084/jem.181.5.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Zenke G., Baumann G., Wenger R., Hiestand P., Quesniaux V., Andersen E., Schreier M. H. Molecular mechanisms of immunosuppression by cyclosporins. Ann N Y Acad Sci. 1993 Jun 23;685:330–335. doi: 10.1111/j.1749-6632.1993.tb35882.x. [DOI] [PubMed] [Google Scholar]
  67. Zoratti M., Szabò I. The mitochondrial permeability transition. Biochim Biophys Acta. 1995 Jul 17;1241(2):139–176. doi: 10.1016/0304-4157(95)00003-a. [DOI] [PubMed] [Google Scholar]
  68. Zoratti M., Szabó I. Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr. 1994 Oct;26(5):543–553. doi: 10.1007/BF00762739. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES