Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1613–1621. doi: 10.1084/jem.183.4.1613

Neonatal peptide exposure can prime T cells and, upon subsequent immunization, induce their immune deviation: implications for antibody vs. T cell-mediated autoimmunity

PMCID: PMC2192522  PMID: 8666919

Abstract

Neonatal exposure to antigen is believed to result in T cell clonal inactivation or deletion. Here we report that, contrary to this notion, neonatal injection of BALB/c mice with a hen egg lysozyme peptide 106- 116 in putative "tolergenic" doses induced a T cell proliferative and an immunoglobulin G (IgG) antibody (Ab) response of both T helper cell 1 (Th1)- (IgG2a, IgG2b, and IgG 3) and Th2-dependent (IgG1) isotopes. Upon subsequent challenge with the peptide in complete Freund's adjuvant in adult life, although this neonatal regimen suppressed proliferation and the production of Th1 cytokines (interleukin[IL]-2 and interferon gamma), Th2 cytokine (IL-5, IL-4, and IL-10) secretion was increased, and the serum levels of Th1- and Th2-dependent isotypes of peptide-specific Ab remained elevated. The in vitro proliferative unresponsiveness in Th1 cells could be reversed by Abs to Th2 cytokines (IL-4 and IL-10). Thus, neonatal treatment with a peptide antigen induces T cell priming including production of IgG Abs of both Th1- and Th2-dependent isotypes. Upon subsequent peptide exposure, the peptide- specific T cell responses undergo an effective class switch in the direction of Th2, resulting in T cell proliferative unresponsiveness. Accordingly, this shift towards increased Ab production to autoantigen could be deleterious in individuals prone to antibody-mediated diseases. Indeed, neonatal treatment with a self-autoantigenic peptide from an anti-DNA monoclonal Ab (A6H 58-69) significantly increased the IgG anti-double-stranded DNA Ab levels in lupus-prone NZB/NZW F1 mice, despite suppressing peptide-specific T cell proliferation. This adverse clinical response is in sharp contrast to the beneficial outcome of neonatal treatment with autoantigens in Th1-mediated autoimmune diseases, such as autoimmune encephalomyelitis, as reported by others. A Th1 to Th2 immune deviation can explain the discordant biological responses after the presumed induction of neonatal tolerance in autoantibody- vs. Th-1 mediated autoimmune diseases.

Full Text

The Full Text of this article is available as a PDF (986.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abbas A. K., Urioste S., Collins T. L., Boom W. H. Heterogeneity of helper/inducer T lymphocytes. IV. Stimulation of resting and activated B cells by Th1 and Th2 clones. J Immunol. 1990 Mar 15;144(6):2031–2037. [PubMed] [Google Scholar]
  2. Adorini L., Harvey M. A., Miller A., Sercarz E. E. Fine specificity of regulatory T cells. II. Suppressor and helper T cells are induced by different regions of hen egg-white lysozyme in a genetically nonresponder mouse strain. J Exp Med. 1979 Aug 1;150(2):293–306. doi: 10.1084/jem.150.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ando D. G., Sercarz E. E., Hahn B. H. Mechanisms of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model. J Immunol. 1987 May 15;138(10):3185–3190. [PubMed] [Google Scholar]
  4. Burstein H. J., Abbas A. K. In vivo role of interleukin 4 in T cell tolerance induced by aqueous protein antigen. J Exp Med. 1993 Feb 1;177(2):457–463. doi: 10.1084/jem.177.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caulada-Benedetti Z., al-Zamel F., Sher A., James S. Comparison of Th1- and Th2-associated immune reactivities stimulated by single versus multiple vaccination of mice with irradiated Schistosoma mansoni cercariae. J Immunol. 1991 Mar 1;146(5):1655–1660. [PubMed] [Google Scholar]
  6. Chiller J. M., Romball C. G., Weigle W. O. Induction of immunological tolerance in neonatal and adult rabbits. Differences in the cellular events. Cell Immunol. 1973 Jul;8(1):28–39. doi: 10.1016/0008-8749(73)90090-7. [DOI] [PubMed] [Google Scholar]
  7. Chirmule N., Oyaizu N., Kalyanaraman V. S., Pahwa S. Misinterpretation of results of cytokine bioassays. J Immunol Methods. 1991 Mar 1;137(1):141–144. doi: 10.1016/0022-1759(91)90403-3. [DOI] [PubMed] [Google Scholar]
  8. Cibotti R., Kanellopoulos J. M., Cabaniols J. P., Halle-Panenko O., Kosmatopoulos K., Sercarz E., Kourilsky P. Tolerance to a self-protein involves its immunodominant but does not involve its subdominant determinants. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):416–420. doi: 10.1073/pnas.89.1.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Clayton J. P., Gammon G. M., Ando D. G., Kono D. H., Hood L., Sercarz E. E. Peptide-specific prevention of experimental allergic encephalomyelitis. Neonatal tolerance induced to the dominant T cell determinant of myelin basic protein. J Exp Med. 1989 May 1;169(5):1681–1691. doi: 10.1084/jem.169.5.1681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cua D. J., Hinton D. R., Stohlman S. A. Self-antigen-induced Th2 responses in experimental allergic encephalomyelitis (EAE)-resistant mice. Th2-mediated suppression of autoimmune disease. J Immunol. 1995 Oct 15;155(8):4052–4059. [PubMed] [Google Scholar]
  11. De Wit D., Van Mechelen M., Ryelandt M., Figueiredo A. C., Abramowicz D., Goldman M., Bazin H., Urbain J., Leo O. The injection of deaggregated gamma globulins in adult mice induces antigen-specific unresponsiveness of T helper type 1 but not type 2 lymphocytes. J Exp Med. 1992 Jan 1;175(1):9–14. doi: 10.1084/jem.175.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ebling F. M., Tsao B. P., Singh R. R., Sercarz E., Hahn B. H. A peptide derived from an autoantibody can stimulate T cells in the (NZB x NZW)F1 mouse model of systemic lupus erythematosus. Arthritis Rheum. 1993 Mar;36(3):355–364. doi: 10.1002/art.1780360311. [DOI] [PubMed] [Google Scholar]
  13. Etlinger H. M., Chiller J. M. Maturation of the lymphoid system. II. Characterization of the cellular levels of unresponsiveness induced in neonates by a T-dependent antigen that is an obligate immunogen in adults. J Immunol. 1979 Jun;122(6):2564–2570. [PubMed] [Google Scholar]
  14. Finkelman F. D., Holmes J., Katona I. M., Urban J. F., Jr, Beckmann M. P., Park L. S., Schooley K. A., Coffman R. L., Mosmann T. R., Paul W. E. Lymphokine control of in vivo immunoglobulin isotype selection. Annu Rev Immunol. 1990;8:303–333. doi: 10.1146/annurev.iy.08.040190.001511. [DOI] [PubMed] [Google Scholar]
  15. Gammon G. M., Oki A., Shastri N., Sercarz E. E. Induction of tolerance to one determinant on a synthetic peptide does not affect the response to a second linked determinant. Implications for the mechanism of neonatal tolerance induction. J Exp Med. 1986 Aug 1;164(2):667–672. doi: 10.1084/jem.164.2.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gammon G., Dunn K., Shastri N., Oki A., Wilbur S., Sercarz E. E. Neonatal T-cell tolerance to minimal immunogenic peptides is caused by clonal inactivation. 1986 Jan 30-Feb 5Nature. 319(6052):413–415. doi: 10.1038/319413a0. [DOI] [PubMed] [Google Scholar]
  17. Gilbert K. M., Rothermel A. L., Ernst D. N., Hobbs M. V., Weigle W. O. Ability of tolerized Th1 and Th2 clones to stimulate B cell activation and cell cycle progression. Cell Immunol. 1992 Jun;142(1):1–15. doi: 10.1016/0008-8749(92)90264-p. [DOI] [PubMed] [Google Scholar]
  18. Hu-Li J., Ohara J., Watson C., Tsang W., Paul W. E. Derivation of a T cell line that is highly responsive to IL-4 and IL-2 (CT.4R) and of an IL-2 hyporesponsive mutant of that line (CT.4S). J Immunol. 1989 Feb 1;142(3):800–807. [PubMed] [Google Scholar]
  19. Ishida H., Muchamuel T., Sakaguchi S., Andrade S., Menon S., Howard M. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med. 1994 Jan 1;179(1):305–310. doi: 10.1084/jem.179.1.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kuchroo V. K., Das M. P., Brown J. A., Ranger A. M., Zamvil S. S., Sobel R. A., Weiner H. L., Nabavi N., Glimcher L. H. B7-1 and B7-2 costimulatory molecules activate differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995 Mar 10;80(5):707–718. doi: 10.1016/0092-8674(95)90349-6. [DOI] [PubMed] [Google Scholar]
  21. Loblay R. H., Fazekas de St Groth B., Pritchard-Briscoe H., Basten A. Suppressor T cell memory. II. The role of memory suppressor T cells in tolerance to human gamma globulin. J Exp Med. 1983 Mar 1;157(3):957–973. doi: 10.1084/jem.157.3.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mohan C., Adams S., Stanik V., Datta S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. 1993 May 1;177(5):1367–1381. doi: 10.1084/jem.177.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moore K. W., O'Garra A., de Waal Malefyt R., Vieira P., Mosmann T. R. Interleukin-10. Annu Rev Immunol. 1993;11:165–190. doi: 10.1146/annurev.iy.11.040193.001121. [DOI] [PubMed] [Google Scholar]
  24. Mosmann T. R., Bond M. W., Coffman R. L., Ohara J., Paul W. E. T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc Natl Acad Sci U S A. 1986 Aug;83(15):5654–5658. doi: 10.1073/pnas.83.15.5654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mosmann T. R., Coffman R. L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol. 1989;7:145–173. doi: 10.1146/annurev.iy.07.040189.001045. [DOI] [PubMed] [Google Scholar]
  26. Myers L. K., Stuart J. M., Seyer J. M., Kang A. H. Identification of an immunosuppressive epitope of type II collagen that confers protection against collagen-induced arthritis. J Exp Med. 1989 Dec 1;170(6):1999–2010. doi: 10.1084/jem.170.6.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Müller W., Vandenabeele P. A T cell clone which responds to interleukin 2 but not to interleukin 4. Eur J Immunol. 1987 Apr;17(4):579–580. doi: 10.1002/eji.1830170424. [DOI] [PubMed] [Google Scholar]
  28. Nossal G. J. Cellular mechanisms of immunologic tolerance. Annu Rev Immunol. 1983;1:33–62. doi: 10.1146/annurev.iy.01.040183.000341. [DOI] [PubMed] [Google Scholar]
  29. Ohara J., Paul W. E. Production of a monoclonal antibody to and molecular characterization of B-cell stimulatory factor-1. Nature. 1985 May 23;315(6017):333–336. doi: 10.1038/315333a0. [DOI] [PubMed] [Google Scholar]
  30. Ohnishi K., Ebling F. M., Mitchell B., Singh R. R., Hahn B. H., Tsao B. P. Comparison of pathogenic and non-pathogenic murine antibodies to DNA: antigen binding and structural characteristics. Int Immunol. 1994 Jun;6(6):817–830. doi: 10.1093/intimm/6.6.817. [DOI] [PubMed] [Google Scholar]
  31. Otten G. R., Germain R. N. Split anergy in a CD8+ T cell: receptor-dependent cytolysis in the absence of interleukin-2 production. Science. 1991 Mar 8;251(4998):1228–1231. doi: 10.1126/science.1900952. [DOI] [PubMed] [Google Scholar]
  32. Petersen J. S., Karlsen A. E., Markholst H., Worsaae A., Dyrberg T., Michelsen B. Neonatal tolerization with glutamic acid decarboxylase but not with bovine serum albumin delays the onset of diabetes in NOD mice. Diabetes. 1994 Dec;43(12):1478–1484. doi: 10.2337/diab.43.12.1478. [DOI] [PubMed] [Google Scholar]
  33. Peterson J. D., Karpus W. J., Clatch R. J., Miller S. D. Split tolerance of Th1 and Th2 cells in tolerance to Theiler's murine encephalomyelitis virus. Eur J Immunol. 1993 Jan;23(1):46–55. doi: 10.1002/eji.1830230109. [DOI] [PubMed] [Google Scholar]
  34. Powrie F., Coffman R. L. Cytokine regulation of T-cell function: potential for therapeutic intervention. Immunol Today. 1993 Jun;14(6):270–274. doi: 10.1016/0167-5699(93)90044-L. [DOI] [PubMed] [Google Scholar]
  35. Qin Y. F., Sun D. M., Goto M., Meyermann R., Wekerle H. Resistance to experimental autoimmune encephalomyelitis induced by neonatal tolerization to myelin basic protein: clonal elimination vs. regulation of autoaggressive lymphocytes. Eur J Immunol. 1989 Feb;19(2):373–380. doi: 10.1002/eji.1830190223. [DOI] [PubMed] [Google Scholar]
  36. Romball C. G., Weigle W. O. In vivo induction of tolerance in murine CD4+ cell subsets. J Exp Med. 1993 Nov 1;178(5):1637–1644. doi: 10.1084/jem.178.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Röcken M., Saurat J. H., Hauser C. A common precursor for CD4+ T cells producing IL-2 or IL-4. J Immunol. 1992 Feb 15;148(4):1031–1036. [PubMed] [Google Scholar]
  38. Saoudi A., Simmonds S., Huitinga I., Mason D. Prevention of experimental allergic encephalomyelitis in rats by targeting autoantigen to B cells: evidence that the protective mechanism depends on changes in the cytokine response and migratory properties of the autoantigen-specific T cells. J Exp Med. 1995 Aug 1;182(2):335–344. doi: 10.1084/jem.182.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Singh R. R., Ebling F. M., Sercarz E. E., Hahn B. H. Immune tolerance to autoantibody-derived peptides delays development of autoimmunity in murine lupus. J Clin Invest. 1995 Dec;96(6):2990–2996. doi: 10.1172/JCI118371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Singh R. R., Kumar V., Ebling F. M., Southwood S., Sette A., Sercarz E. E., Hahn B. H. T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J Exp Med. 1995 Jun 1;181(6):2017–2027. doi: 10.1084/jem.181.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Waters C. A., Pilarski L. M., Wegmann T. G., Diener E. Tolerance induction during ontogeny. I. Presence of active suppression in mice rendered tolerant to human gamma-globulin in utero correlates with the breakdown of the tolerant state. J Exp Med. 1979 May 1;149(5):1134–1151. doi: 10.1084/jem.149.5.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Young C. R., Atassi M. Z. T-lymphocyte recognition of sperm-whale myoglobin. Specificity of T-cell recognition following neonatal tolerance with either myoglobin or synthetic peptides of an antigenic site. J Immunogenet. 1983 Apr;10(2):161–169. doi: 10.1111/j.1744-313x.1983.tb01028.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES