Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1579–1586. doi: 10.1084/jem.183.4.1579

Localization of the binding site for the monocyte immunoglobulin (Ig) A- Fc receptor (CD89) to the domain boundary between Calpha2 and Calpha3 in human IgA1

PMCID: PMC2192530  PMID: 8666916

Abstract

Immunoglobulin (Ig) A serves as the first line of humoral defense at all mucosal surfaces and is present in large quantities of blood. In playing its role in humoral immunity, IgA interacts with a variety of effector molecules present both in serum and on the surfaces of immune and inflammatory cells. To study these interactions, we previously established expression of human IgA1 in insect cells using recombinant baculoviruses and showed that the expressed antibody is a structurally and functionally intact polypeptide useful for examining the molecular properties of IgA. Indeed, since the C alpha 2 N-linked glycosylation site lies near the Fab-distal pole of C alpha 2, the inability of a mutant IgA1 lacking C alpha 2 N-glycosylation to bind its cognate receptor suggested that the monocyte Fc alpha receptor (mFcalphaR) recognizes IgA at a hinge-distal site encompassing the boundary between the C alpha 2 and C alpha 3 domains. In this report, we utilize both domain-swapped IgA/IgG and point-mutated IgA chimeras to verify the above hypothesis. Using an antigen-specific rosetting assay and a mFc alpha R-expressing cell line, we show that (a) C alpha 2 and C alpha 3 together are necessary and sufficient for binding; (b) neither the IgA hinge nor the tailpiece is necessary for binding; (c) mutations away from the interdomain boundary do not affect binding; and (d) mutations located near the three-dimensional boundary between C alpha 2 and C alpha 3 completely disrupt binding. Taken together, these results localize the mFc alpha R recognition site on IgA to the boundary region between the second and third constant domains--a site analogous to that recognized by Staphylococcus aureus protein A on IgG. The use of this hinge-distal site is, to date, unique among Fc receptors of the Ig superfamily.

Full Text

The Full Text of this article is available as a PDF (861.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. E., Knoblock K. F. Bovine costimulator. I. Production kinetics, partial purification, and quantification in serum-free Iscove's medium. Vet Immunol Immunopathol. 1982 Jul;3(4):365–379. doi: 10.1016/0165-2427(82)90020-4. [DOI] [PubMed] [Google Scholar]
  2. Biewenga J., Faber A., de Lange G., van Leeuwen F., van Eede P., Jefferis R., Haaijman J. J., Vlug A. Monoclonal antibodies against different domains of human IgA: specificities determined by immunoblotting and haemagglutination-inhibition. Mol Immunol. 1986 Jul;23(7):761–767. doi: 10.1016/0161-5890(86)90088-x. [DOI] [PubMed] [Google Scholar]
  3. Burton D. R., Woof J. M. Human antibody effector function. Adv Immunol. 1992;51:1–84. doi: 10.1016/s0065-2776(08)60486-1. [DOI] [PubMed] [Google Scholar]
  4. Canfield S. M., Morrison S. L. The binding affinity of human IgG for its high affinity Fc receptor is determined by multiple amino acids in the CH2 domain and is modulated by the hinge region. J Exp Med. 1991 Jun 1;173(6):1483–1491. doi: 10.1084/jem.173.6.1483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carayannopoulos L., Max E. E., Capra J. D. Recombinant human IgA expressed in insect cells. Proc Natl Acad Sci U S A. 1994 Aug 30;91(18):8348–8352. doi: 10.1073/pnas.91.18.8348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chappel M. S., Isenman D. E., Everett M., Xu Y. Y., Dorrington K. J., Klein M. H. Identification of the Fc gamma receptor class I binding site in human IgG through the use of recombinant IgG1/IgG2 hybrid and point-mutated antibodies. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9036–9040. doi: 10.1073/pnas.88.20.9036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins S. J., Gallo R. C., Gallagher R. E. Continuous growth and differentiation of human myeloid leukaemic cells in suspension culture. Nature. 1977 Nov 24;270(5635):347–349. doi: 10.1038/270347a0. [DOI] [PubMed] [Google Scholar]
  8. Deisenhofer J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-A resolution. Biochemistry. 1981 Apr 28;20(9):2361–2370. [PubMed] [Google Scholar]
  9. Deisenhofer J., Jones T. A., Huber R., Sjödahl J., Sjöquist J. Crystallization, crystal structure analysis and atomic model of the complex formed by a human Fc fragment and fragment B of protein A from Staphylococcus aureus. Hoppe Seylers Z Physiol Chem. 1978 Aug;359(8):975–985. doi: 10.1515/bchm2.1978.359.2.975. [DOI] [PubMed] [Google Scholar]
  10. Fellah J. S., Kerfourn F., Wiles M. V., Schwager J., Charlemagne J. Phylogeny of immunoglobulin heavy chain isotypes: structure of the constant region of Ambystoma mexicanum upsilon chain deduced from cDNA sequence. Immunogenetics. 1993;38(5):311–317. doi: 10.1007/BF00210471. [DOI] [PubMed] [Google Scholar]
  11. Fujiyama Y., Kobayashi K., Senda S., Benno Y., Bamba T., Hosoda S. A novel IgA protease from Clostridium sp. capable of cleaving IgA1 and IgA2 A2m(1) but not IgA2 A2m(2) allotype paraproteins. J Immunol. 1985 Jan;134(1):573–576. [PubMed] [Google Scholar]
  12. Hasemann C. A., Capra J. D. High-level production of a functional immunoglobulin heterodimer in a baculovirus expression system. Proc Natl Acad Sci U S A. 1990 May;87(10):3942–3946. doi: 10.1073/pnas.87.10.3942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hill R. L., Delaney R., Fellows R. E., Lebovitz H. E. The evolutionary origins of the immunoglobulins. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1762–1769. doi: 10.1073/pnas.56.6.1762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Horton R. M., Cai Z. L., Ho S. N., Pease L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques. 1990 May;8(5):528–535. [PubMed] [Google Scholar]
  15. Kawamura S., Ueda S. Immunoglobulin CH gene family in hominoids and its evolutionary history. Genomics. 1992 May;13(1):194–200. doi: 10.1016/0888-7543(92)90220-m. [DOI] [PubMed] [Google Scholar]
  16. Kilian M., Mestecky J., Russell M. W. Defense mechanisms involving Fc-dependent functions of immunoglobulin A and their subversion by bacterial immunoglobulin A proteases. Microbiol Rev. 1988 Jun;52(2):296–303. doi: 10.1128/mr.52.2.296-303.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim J. K., Tsen M. F., Ghetie V., Ward E. S. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur J Immunol. 1994 Mar;24(3):542–548. doi: 10.1002/eji.1830240308. [DOI] [PubMed] [Google Scholar]
  18. Kim J. K., Tsen M. F., Ghetie V., Ward E. S. Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fc receptor. Eur J Immunol. 1994 Oct;24(10):2429–2434. doi: 10.1002/eji.1830241025. [DOI] [PubMed] [Google Scholar]
  19. Klein M., Haeffner-Cavaillon N., Isenman D. E., Rivat C., Navia M. A., Davies D. R., Dorrington K. J. Expression of biological effector functions by immunoglobulin G molecules lacking the hinge region. Proc Natl Acad Sci U S A. 1981 Jan;78(1):524–528. doi: 10.1073/pnas.78.1.524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kremer E. J., Kalatzis V., Baker E., Callen D. F., Sutherland G. R., Maliszewski C. R. The gene for the human IgA Fc receptor maps to 19q13.4. Hum Genet. 1992 Apr;89(1):107–108. doi: 10.1007/BF00207054. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Lesk A. M., Chothia C. Evolution of proteins formed by beta-sheets. II. The core of the immunoglobulin domains. J Mol Biol. 1982 Sep 15;160(2):325–342. doi: 10.1016/0022-2836(82)90179-6. [DOI] [PubMed] [Google Scholar]
  23. Lucisano Valim Y. M., Lachmann P. J. The effect of antibody isotype and antigenic epitope density on the complement-fixing activity of immune complexes: a systematic study using chimaeric anti-NIP antibodies with human Fc regions. Clin Exp Immunol. 1991 Apr;84(1):1–8. doi: 10.1111/j.1365-2249.1991.tb08115.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Maliszewski C. R., March C. J., Schoenborn M. A., Gimpel S., Shen L. Expression cloning of a human Fc receptor for IgA. J Exp Med. 1990 Dec 1;172(6):1665–1672. doi: 10.1084/jem.172.6.1665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mestecky J., McGhee J. R. Immunoglobulin A (IgA): molecular and cellular interactions involved in IgA biosynthesis and immune response. Adv Immunol. 1987;40:153–245. doi: 10.1016/s0065-2776(08)60240-0. [DOI] [PubMed] [Google Scholar]
  26. Monteiro R. C., Hostoffer R. W., Cooper M. D., Bonner J. R., Gartland G. L., Kubagawa H. Definition of immunoglobulin A receptors on eosinophils and their enhanced expression in allergic individuals. J Clin Invest. 1993 Oct;92(4):1681–1685. doi: 10.1172/JCI116754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mostov K. E., Friedlander M., Blobel G. The receptor for transepithelial transport of IgA and IgM contains multiple immunoglobulin-like domains. Nature. 1984 Mar 1;308(5954):37–43. doi: 10.1038/308037a0. [DOI] [PubMed] [Google Scholar]
  28. Nissim A., Eshhar Z. The human mast cell receptor binding site maps to the third constant domain of immunoglobulin E. Mol Immunol. 1992 Sep;29(9):1065–1072. doi: 10.1016/0161-5890(92)90038-y. [DOI] [PubMed] [Google Scholar]
  29. Pantoliano M. W., Bird R. E., Johnson S., Asel E. D., Dodd S. W., Wood J. F., Hardman K. D. Conformational stability, folding, and ligand-binding affinity of single-chain Fv immunoglobulin fragments expressed in Escherichia coli. Biochemistry. 1991 Oct 22;30(42):10117–10125. doi: 10.1021/bi00106a007. [DOI] [PubMed] [Google Scholar]
  30. Plaut A. G., Bachovchin W. W. IgA-specific prolyl endopeptidases: serine type. Methods Enzymol. 1994;244:137–151. doi: 10.1016/0076-6879(94)44012-3. [DOI] [PubMed] [Google Scholar]
  31. Plaut A. G., Wistar R., Jr, Capra J. D. Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J Clin Invest. 1974 Dec;54(6):1295–1300. doi: 10.1172/JCI107875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Plaut A. G., Wright A. Immunoglobulin A-metallo-type specific prolyl endopeptidases. Methods Enzymol. 1995;248:634–642. doi: 10.1016/0076-6879(95)48040-4. [DOI] [PubMed] [Google Scholar]
  33. Prahl J. W., Abel C. A., Grey H. M. Carboxy-terminal structure of the chain of human IgA myeloma proteins. Biochemistry. 1971 May 11;10(10):1808–1812. doi: 10.1021/bi00786a012. [DOI] [PubMed] [Google Scholar]
  34. Rigby W. F., Shen L., Ball E. D., Fanger M. W. 1,25-Dihydroxyvitamin D3 induces a myelomonocytic phenotype with enhanced effector cell function in the HL-60 promyelocytic leukemia cell line. Mol Immunol. 1985 May;22(5):567–572. doi: 10.1016/0161-5890(85)90180-4. [DOI] [PubMed] [Google Scholar]
  35. Sarmay G., Lund J., Rozsnyay Z., Gergely J., Jefferis R. Mapping and comparison of the interaction sites on the Fc region of IgG responsible for triggering antibody dependent cellular cytotoxicity (ADCC) through different types of human Fc gamma receptor. Mol Immunol. 1992 May;29(5):633–639. doi: 10.1016/0161-5890(92)90200-h. [DOI] [PubMed] [Google Scholar]
  36. Shen L., Lasser R., Fanger M. W. My 43, a monoclonal antibody that reacts with human myeloid cells inhibits monocyte IgA binding and triggers function. J Immunol. 1989 Dec 15;143(12):4117–4122. [PubMed] [Google Scholar]
  37. Simister N. E., Mostov K. E. An Fc receptor structurally related to MHC class I antigens. Nature. 1989 Jan 12;337(6203):184–187. doi: 10.1038/337184a0. [DOI] [PubMed] [Google Scholar]
  38. Tuaillon N., Taylor L. D., Lonberg N., Tucker P. W., Capra J. D. Human immunoglobulin heavy-chain minilocus recombination in transgenic mice: gene-segment use in mu and gamma transcripts. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3720–3724. doi: 10.1073/pnas.90.8.3720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Underdown B. J., Schiff J. M. Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol. 1986;4:389–417. doi: 10.1146/annurev.iy.04.040186.002133. [DOI] [PubMed] [Google Scholar]
  40. Weetall M., Shopes B., Holowka D., Baird B. Mapping the site of interaction between murine IgE and its high affinity receptor with chimeric Ig. J Immunol. 1990 Dec 1;145(11):3849–3854. [PubMed] [Google Scholar]
  41. Weisbart R. H., Kacena A., Schuh A., Golde D. W. GM-CSF induces human neutrophil IgA-mediated phagocytosis by an IgA Fc receptor activation mechanism. Nature. 1988 Apr 14;332(6165):647–648. doi: 10.1038/332647a0. [DOI] [PubMed] [Google Scholar]
  42. Zheng X. X., Steele A. W., Nickerson P. W., Steurer W., Steiger J., Strom T. B. Administration of noncytolytic IL-10/Fc in murine models of lipopolysaccharide-induced septic shock and allogeneic islet transplantation. J Immunol. 1995 May 15;154(10):5590–5600. [PubMed] [Google Scholar]
  43. van Loghem E., de Lange G. Immunoglobulin epitopes in primates. Vox Sang. 1979;37(6):329–337. doi: 10.1111/j.1423-0410.1979.tb02312.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES