Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Apr 1;183(4):1323–1329. doi: 10.1084/jem.183.4.1323

The altered tumoricidal capacity of macrophages isolated from tumor- bearing mice is related to reduce expression of the inducible nitric oxide synthase gene

PMCID: PMC2192536  PMID: 8666890

Abstract

Nitric oxide (NO) is a major effector molecule in the destruction of tumor cells by activated macrophages. However, in many cases, developing neoplasms appear to be capable of impairing steps in the complex process leading to NO production as a means of avoiding immune destruction. After activation with lipopolysaccharide (LPS), peritoneal- elicited macrophages (PEM) from mice bearing mammary tumors display alterations in their ability to lyse tumor cells due to reduced production of NO. In contrast, when these same cells are stimulated with LPS in combination with interferon gamma (IFN-gamma), they are able to produce NO and lyse targets at normal levels. Since tumor- associated macrophages are intimately associated with the cells of the developing tumor, their ability to produce NO and lyse tumor targets is likely to be more relevant to controlling tumor growth. This population of macrophages exhibited a more profound inability to produce NO and lyse targets and, unlike the PEM, was not able to upregulate these functions even when treated with combinations of LPS and IFN-gamma. Northern and Western blots revealed that inducible nitric oxide synthase (iNOS) mRNA and protein levels correlated directly with the ability of each macrophage population to produce NO, and the levels of these macromolecules were altered sufficiently in tumor bearers' macrophages to account for the diminished NO production described. These results indicate that a spatial gradient of suppression of macrophage cytolytic activity and iNOS expression exists in mammary tumor-bearing mice, whereby macrophages from within the tumor exhibit a more pronounced suppression than the more distally located PEM. This suppression may be due to proximity of the macrophages to the developing tumor, macrophage maturational state, or both.

Full Text

The Full Text of this article is available as a PDF (974.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. O., Hamilton T. A. The cell biology of macrophage activation. Annu Rev Immunol. 1984;2:283–318. doi: 10.1146/annurev.iy.02.040184.001435. [DOI] [PubMed] [Google Scholar]
  2. Beckerman K. P., Rogers H. W., Corbett J. A., Schreiber R. D., McDaniel M. L., Unanue E. R. Release of nitric oxide during the T cell-independent pathway of macrophage activation. Its role in resistance to Listeria monocytogenes. J Immunol. 1993 Feb 1;150(3):888–895. [PubMed] [Google Scholar]
  3. Calderón C., Huang Z. H., Gage D. A., Sotomayor E. M., Lopez D. M. Isolation of a nitric oxide inhibitor from mammary tumor cells and its characterization as phosphatidyl serine. J Exp Med. 1994 Sep 1;180(3):945–958. doi: 10.1084/jem.180.3.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Duffie G. P., Young M. R. Tumoricidal activity of alveolar and peritoneal macrophages of C57BL/6 mice bearing metastatic or nonmetastatic variants of Lewis lung carcinoma. J Leukoc Biol. 1991 Jan;49(1):8–14. doi: 10.1002/jlb.49.1.8. [DOI] [PubMed] [Google Scholar]
  5. Ford T. C., Rickwood D. Formation of isotonic Nycodenz gradients for cell separations. Anal Biochem. 1982 Aug;124(2):293–298. doi: 10.1016/0003-2697(82)90041-0. [DOI] [PubMed] [Google Scholar]
  6. Fu Y. X., Watson G., Jimenez J. J., Wang Y., Lopez D. M. Expansion of immunoregulatory macrophages by granulocyte-macrophage colony-stimulating factor derived from a murine mammary tumor. Cancer Res. 1990 Jan 15;50(2):227–234. [PubMed] [Google Scholar]
  7. Ghezzi P., Erroi A., Acero R., Salmona M., Mantovani A. Defective production of reactive oxygen intermediates by tumor-associated macrophages exposed to phorbol ester. J Leukoc Biol. 1987 Jul;42(1):84–90. doi: 10.1002/jlb.42.1.84. [DOI] [PubMed] [Google Scholar]
  8. Henry Y., Lepoivre M., Drapier J. C., Ducrocq C., Boucher J. L., Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993 Sep;7(12):1124–1134. doi: 10.1096/fasebj.7.12.8397130. [DOI] [PubMed] [Google Scholar]
  9. Hibbs J. B., Jr, Taintor R. R., Vavrin Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science. 1987 Jan 23;235(4787):473–476. doi: 10.1126/science.2432665. [DOI] [PubMed] [Google Scholar]
  10. Keller R., Keist R., Wechsler A., Leist T. P., van der Meide P. H. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer. 1990 Oct 15;46(4):682–686. doi: 10.1002/ijc.2910460422. [DOI] [PubMed] [Google Scholar]
  11. Lorsbach R. B., Murphy W. J., Lowenstein C. J., Snyder S. H., Russell S. W. Expression of the nitric oxide synthase gene in mouse macrophages activated for tumor cell killing. Molecular basis for the synergy between interferon-gamma and lipopolysaccharide. J Biol Chem. 1993 Jan 25;268(3):1908–1913. [PubMed] [Google Scholar]
  12. Mantovani A., Bottazzi B., Colotta F., Sozzani S., Ruco L. The origin and function of tumor-associated macrophages. Immunol Today. 1992 Jul;13(7):265–270. doi: 10.1016/0167-5699(92)90008-U. [DOI] [PubMed] [Google Scholar]
  13. McBride W. H. Phenotype and functions of intratumoral macrophages. Biochim Biophys Acta. 1986 Aug 5;865(1):27–41. doi: 10.1016/0304-419x(86)90011-9. [DOI] [PubMed] [Google Scholar]
  14. McDowell M. A., Lucas D. M., Nicolet C. M., Paulnock D. M. Differential utilization of IFN-gamma-responsive elements in two maturationally distinct macrophage cell lines. J Immunol. 1995 Nov 15;155(10):4933–4938. [PubMed] [Google Scholar]
  15. Medina D., DeOme K. B. Response of hyperplastic alveolar nodule outgrowth-line D1 to mammary tumor virus, nodule-inducing virus, and prolonged hormonal stimulation acting singly and in combination. J Natl Cancer Inst. 1969 Feb;42(2):303–310. [PubMed] [Google Scholar]
  16. Mills C. D., Shearer J., Evans R., Caldwell M. D. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992 Oct 15;149(8):2709–2714. [PubMed] [Google Scholar]
  17. Moore K., McBride W. H. The activation state of macrophage subpopulations from a murine fibrosarcoma. Int J Cancer. 1980 Nov 15;26(5):609–615. doi: 10.1002/ijc.2910260513. [DOI] [PubMed] [Google Scholar]
  18. Murata J., Corradin S. B., Janzer R. C., Juillerat-Jeanneret L. Tumor cells suppress cytokine-induced nitric-oxide (NO) production in cerebral endothelial cells. Int J Cancer. 1994 Dec 1;59(5):699–705. doi: 10.1002/ijc.2910590519. [DOI] [PubMed] [Google Scholar]
  19. Nicolet C. M., Paulnock D. M. Promoter analysis of an interferon-inducible gene associated with macrophage activation. J Immunol. 1994 Jan 1;152(1):153–162. [PubMed] [Google Scholar]
  20. Pace J. L., Russell S. W. Activation of mouse macrophages for tumor cell killing. I. Quantitative analysis of interactions between lymphokine and lipopolysaccharide. J Immunol. 1981 May;126(5):1863–1867. [PubMed] [Google Scholar]
  21. Sotomayor E. M., DiNapoli M. R., Calderón C., Colsky A., Fu Y. X., Lopez D. M. Decreased macrophage-mediated cytotoxicity in mammary-tumor-bearing mice is related to alteration of nitric-oxide production and/or release. Int J Cancer. 1995 Mar 3;60(5):660–667. doi: 10.1002/ijc.2910600516. [DOI] [PubMed] [Google Scholar]
  22. Sotomayor E. M., Fu Y. X., Lopez-Cepero M., Herbert L., Jimenez J. J., Albarracin C., Lopez D. M. Role of tumor-derived cytokines on the immune system of mice bearing a mammary adenocarcinoma. II. Down-regulation of macrophage-mediated cytotoxicity by tumor-derived granulocyte-macrophage colony-stimulating factor. J Immunol. 1991 Oct 15;147(8):2816–2823. [PubMed] [Google Scholar]
  23. Spitalny G. L., North R. J. Subversion of host defense mechanisms by malignant tumors: an established tumor as a privileged site for bacterial growth. J Exp Med. 1977 May 1;145(5):1264–1277. doi: 10.1084/jem.145.5.1264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Stuehr D. J., Nathan C. F. Nitric oxide. A macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med. 1989 May 1;169(5):1543–1555. doi: 10.1084/jem.169.5.1543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Thomsen L. L., Miles D. W., Happerfield L., Bobrow L. G., Knowles R. G., Moncada S. Nitric oxide synthase activity in human breast cancer. Br J Cancer. 1995 Jul;72(1):41–44. doi: 10.1038/bjc.1995.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Xie Q. W., Cho H. J., Calaycay J., Mumford R. A., Swiderek K. M., Lee T. D., Ding A., Troso T., Nathan C. Cloning and characterization of inducible nitric oxide synthase from mouse macrophages. Science. 1992 Apr 10;256(5054):225–228. doi: 10.1126/science.1373522. [DOI] [PubMed] [Google Scholar]
  27. Yim C. Y., Bastian N. R., Smith J. C., Hibbs J. B., Jr, Samlowski W. E. Macrophage nitric oxide synthesis delays progression of ultraviolet light-induced murine skin cancers. Cancer Res. 1993 Nov 15;53(22):5507–5511. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES