Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 May 1;183(5):2209–2218. doi: 10.1084/jem.183.5.2209

CD40-CD40 ligand interactions are critical in T-B cooperation but not for other anti-viral CD4+ T cell functions

PMCID: PMC2192545  PMID: 8642330

Abstract

CD40-CD40 ligand (CD40L) interaction is required for the generation of antibody responses to T-dependent antigens as well as for the development of germinal centers and memory B cells. The role of the CD40-CD40L interaction in the induction of antigen-specific. Th cells and in mediating Th cell effector functions other than cognate help for B cells is less well understood. Using CD40- and CD40L-deficient mice together with lymphocytic choriomeningitis virus and vesicular stomatitis virus as viral model antigens, this study corroborates earlier findings that no lg isotype switching of virus-specific antibodies was measurable upon infection of CD40- or CD40L-deficient mice. In contrast, in vivo induction of virus-specific CD4+ T cells measured by proliferation and cytokine secretion of primed virus- specific Th cells in vitro was not crucially dependent on the CD40- CD40L interaction. In addition, virus-specific Th cells primed in a CD40-deficient environment, adoptively transferred into CD40-competent recipients, were able to mediate lg isotype switch. Th-mediated effector functions distinct from and in addition to T-B collaboration were analyzed in CD40- and CD40L-deficient and normal mice: (a) local inflammatory reactions upon LCMV infection mediated by LCMV-specific Th cells were not dependent on a functional CD40-CD40L interaction, (b) cytokine-mediated protection by CD4+ T cells primed by vesicular stomatitis virus against a challenge infection with recombinant vaccinia virus expressing the glycoprotein of vesicular stomatitis virus was found to be equivalent in CD40L-deficient and normal mice. Thus, CD40-CD40L interaction plays a crucial role in T-B interactions for Th-dependent activation of B cells but not, or to a much lesser extent, in T cell activation, antigen-specific Th cell responses in vitro, and for interleukin-mediated Th cell effector functions in vivo.

Full Text

The Full Text of this article is available as a PDF (1,013.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen R. C., Armitage R. J., Conley M. E., Rosenblatt H., Jenkins N. A., Copeland N. G., Bedell M. A., Edelhoff S., Disteche C. M., Simoneaux D. K. CD40 ligand gene defects responsible for X-linked hyper-IgM syndrome. Science. 1993 Feb 12;259(5097):990–993. doi: 10.1126/science.7679801. [DOI] [PubMed] [Google Scholar]
  2. Aruffo A., Farrington M., Hollenbaugh D., Li X., Milatovich A., Nonoyama S., Bajorath J., Grosmaire L. S., Stenkamp R., Neubauer M. The CD40 ligand, gp39, is defective in activated T cells from patients with X-linked hyper-IgM syndrome. Cell. 1993 Jan 29;72(2):291–300. doi: 10.1016/0092-8674(93)90668-g. [DOI] [PubMed] [Google Scholar]
  3. Bachmann M. F., Hengartner H., Zinkernagel R. M. T helper cell-independent neutralizing B cell response against vesicular stomatitis virus: role of antigen patterns in B cell induction? Eur J Immunol. 1995 Dec;25(12):3445–3451. doi: 10.1002/eji.1830251236. [DOI] [PubMed] [Google Scholar]
  4. Bachmann M. F., Rohrer U. H., Kündig T. M., Bürki K., Hengartner H., Zinkernagel R. M. The influence of antigen organization on B cell responsiveness. Science. 1993 Nov 26;262(5138):1448–1451. doi: 10.1126/science.8248784. [DOI] [PubMed] [Google Scholar]
  5. Banchereau J., Bazan F., Blanchard D., Brière F., Galizzi J. P., van Kooten C., Liu Y. J., Rousset F., Saeland S. The CD40 antigen and its ligand. Annu Rev Immunol. 1994;12:881–922. doi: 10.1146/annurev.iy.12.040194.004313. [DOI] [PubMed] [Google Scholar]
  6. Battegay M., Moskophidis D., Waldner H., Bründler M. A., Fung-Leung W. P., Mak T. W., Hengartner H., Zinkernagel R. M. Impairment and delay of neutralizing antiviral antibody responses by virus-specific cytotoxic T cells. J Immunol. 1993 Nov 15;151(10):5408–5415. [PubMed] [Google Scholar]
  7. Binder D., Kündig T. M. Antiviral protection by CD8+ versus CD4+ T cells. CD8+ T cells correlating with cytotoxic activity in vitro are more efficient in antivaccinia virus protection than CD4-dependent IL. J Immunol. 1991 Jun 15;146(12):4301–4307. [PubMed] [Google Scholar]
  8. Castelmur I., DiPaolo C., Bachmann M. F., Hengartner H., Zinkernagel R. M., Kündig T. M. Comparison of the sensitivity of in vivo and in vitro assays for detection of antiviral cytotoxic T cell activity. Cell Immunol. 1993 Oct 15;151(2):460–466. doi: 10.1006/cimm.1993.1254. [DOI] [PubMed] [Google Scholar]
  9. Cerny A., Huegin A. W., Sutter S., Bazin H., Hengartner H. H., Zinkernagel R. M. Immunity to lymphocytic choriomeningitis virus in B cell-depleted mice: evidence for B cell and antibody-independent protection by memory T cells. Eur J Immunol. 1986 Aug;16(8):913–917. doi: 10.1002/eji.1830160807. [DOI] [PubMed] [Google Scholar]
  10. Chirmule N., Oyaizu N., Kalyanaraman V. S., Pahwa S. Misinterpretation of results of cytokine bioassays. J Immunol Methods. 1991 Mar 1;137(1):141–144. doi: 10.1016/0022-1759(91)90403-3. [DOI] [PubMed] [Google Scholar]
  11. Clark E. A., Grabstein K. H., Shu G. L. Cultured human follicular dendritic cells. Growth characteristics and interactions with B lymphocytes. J Immunol. 1992 Jun 1;148(11):3327–3335. [PubMed] [Google Scholar]
  12. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  13. Constant S., Schweitzer N., West J., Ranney P., Bottomly K. B lymphocytes can be competent antigen-presenting cells for priming CD4+ T cells to protein antigens in vivo. J Immunol. 1995 Oct 15;155(8):3734–3741. [PubMed] [Google Scholar]
  14. DiSanto J. P., Bonnefoy J. Y., Gauchat J. F., Fischer A., de Saint Basile G. CD40 ligand mutations in x-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):541–543. doi: 10.1038/361541a0. [DOI] [PubMed] [Google Scholar]
  15. Epstein M. M., Di Rosa F., Jankovic D., Sher A., Matzinger P. Successful T cell priming in B cell-deficient mice. J Exp Med. 1995 Oct 1;182(4):915–922. doi: 10.1084/jem.182.4.915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Farrington M., Grosmaire L. S., Nonoyama S., Fischer S. H., Hollenbaugh D., Ledbetter J. A., Noelle R. J., Aruffo A., Ochs H. D. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1099–1103. doi: 10.1073/pnas.91.3.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Foy T. M., Laman J. D., Ledbetter J. A., Aruffo A., Claassen E., Noelle R. J. gp39-CD40 interactions are essential for germinal center formation and the development of B cell memory. J Exp Med. 1994 Jul 1;180(1):157–163. doi: 10.1084/jem.180.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Foy T. M., Shepherd D. M., Durie F. H., Aruffo A., Ledbetter J. A., Noelle R. J. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. II. Prolonged suppression of the humoral immune response by an antibody to the ligand for CD40, gp39. J Exp Med. 1993 Nov 1;178(5):1567–1575. doi: 10.1084/jem.178.5.1567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Freudenthal P. S., Steinman R. M. The distinct surface of human blood dendritic cells, as observed after an improved isolation method. Proc Natl Acad Sci U S A. 1990 Oct;87(19):7698–7702. doi: 10.1073/pnas.87.19.7698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Galy A. H., Spits H. CD40 is functionally expressed on human thymic epithelial cells. J Immunol. 1992 Aug 1;149(3):775–782. [PubMed] [Google Scholar]
  21. Gray D., Dullforce P., Jainandunsing S. Memory B cell development but not germinal center formation is impaired by in vivo blockade of CD40-CD40 ligand interaction. J Exp Med. 1994 Jul 1;180(1):141–155. doi: 10.1084/jem.180.1.141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Grewal I. S., Xu J., Flavell R. A. Impairment of antigen-specific T-cell priming in mice lacking CD40 ligand. Nature. 1995 Dec 7;378(6557):617–620. doi: 10.1038/378617a0. [DOI] [PubMed] [Google Scholar]
  23. Gupta S. C., Hengartner H., Zinkernagel R. M. Primary antibody responses to a well-defined and unique hapten are not enhanced by preimmunization with carrier: analysis in a viral model. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2604–2608. doi: 10.1073/pnas.83.8.2604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Han S., Hathcock K., Zheng B., Kepler T. B., Hodes R., Kelsoe G. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J Immunol. 1995 Jul 15;155(2):556–567. [PubMed] [Google Scholar]
  25. Janeway C. A., Jr, Ron J., Katz M. E. The B cell is the initiating antigen-presenting cell in peripheral lymph nodes. J Immunol. 1987 Feb 15;138(4):1051–1055. [PubMed] [Google Scholar]
  26. Kawabe T., Naka T., Yoshida K., Tanaka T., Fujiwara H., Suematsu S., Yoshida N., Kishimoto T., Kikutani H. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity. 1994 Jun;1(3):167–178. doi: 10.1016/1074-7613(94)90095-7. [DOI] [PubMed] [Google Scholar]
  27. Kitamura D., Roes J., Kühn R., Rajewsky K. A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene. Nature. 1991 Apr 4;350(6317):423–426. doi: 10.1038/350423a0. [DOI] [PubMed] [Google Scholar]
  28. Korthäuer U., Graf D., Mages H. W., Brière F., Padayachee M., Malcolm S., Ugazio A. G., Notarangelo L. D., Levinsky R. J., Kroczek R. A. Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993 Feb 11;361(6412):539–541. doi: 10.1038/361539a0. [DOI] [PubMed] [Google Scholar]
  29. Kurt-Jones E. A., Liano D., HayGlass K. A., Benacerraf B., Sy M. S., Abbas A. K. The role of antigen-presenting B cells in T cell priming in vivo. Studies of B cell-deficient mice. J Immunol. 1988 Jun 1;140(11):3773–3778. [PubMed] [Google Scholar]
  30. Kündig T. M., Castelmur I., Bachmann M. F., Abraham D., Binder D., Hengartner H., Zinkernagel R. M. Fewer protective cytotoxic T-cell epitopes than T-helper-cell epitopes on vesicular stomatitis virus. J Virol. 1993 Jun;67(6):3680–3683. doi: 10.1128/jvi.67.6.3680-3683.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Lane P., Brocker T., Hubele S., Padovan E., Lanzavecchia A., McConnell F. Soluble CD40 ligand can replace the normal T cell-derived CD40 ligand signal to B cells in T cell-dependent activation. J Exp Med. 1993 Apr 1;177(4):1209–1213. doi: 10.1084/jem.177.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lawton A. R., 3rd, Asofsky R., Hylton M. B., Cooper M. D. Suppression of immunoglobulin class synthesis in mice. I. Effects of treatment with antibody to -chain. J Exp Med. 1972 Feb 1;135(2):277–297. doi: 10.1084/jem.135.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lederman S., Yellin M. J., Inghirami G., Lee J. J., Knowles D. M., Chess L. Molecular interactions mediating T-B lymphocyte collaboration in human lymphoid follicles. Roles of T cell-B-cell-activating molecule (5c8 antigen) and CD40 in contact-dependent help. J Immunol. 1992 Dec 15;149(12):3817–3826. [PubMed] [Google Scholar]
  34. Lederman S., Yellin M. J., Krichevsky A., Belko J., Lee J. J., Chess L. Identification of a novel surface protein on activated CD4+ T cells that induces contact-dependent B cell differentiation (help). J Exp Med. 1992 Apr 1;175(4):1091–1101. doi: 10.1084/jem.175.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Leist T. P., Cobbold S. P., Waldmann H., Aguet M., Zinkernagel R. M. Functional analysis of T lymphocyte subsets in antiviral host defense. J Immunol. 1987 Apr 1;138(7):2278–2281. [PubMed] [Google Scholar]
  36. Liu Y., Wu Y., Ramarathinam L., Guo Y., Huszar D., Trounstine M., Zhao M. Gene-targeted B-deficient mice reveal a critical role for B cells in the CD4 T cell response. Int Immunol. 1995 Aug;7(8):1353–1362. doi: 10.1093/intimm/7.8.1353. [DOI] [PubMed] [Google Scholar]
  37. Mackett M., Yilma T., Rose J. K., Moss B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science. 1985 Jan 25;227(4685):433–435. doi: 10.1126/science.2981435. [DOI] [PubMed] [Google Scholar]
  38. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987 May;68(Pt 5):1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
  39. Moskophidis D., Lehmann-Grube F. Virus-induced delayed-type hypersensitivity reaction is sequentially mediated by CD8+ and CD4+ T lymphocytes. Proc Natl Acad Sci U S A. 1989 May;86(9):3291–3295. doi: 10.1073/pnas.86.9.3291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Nishioka Y., Lipsky P. E. The role of CD40-CD40 ligand interaction in human T cell-B cell collaboration. J Immunol. 1994 Aug 1;153(3):1027–1036. [PubMed] [Google Scholar]
  41. Noelle R. J., Roy M., Shepherd D. M., Stamenkovic I., Ledbetter J. A., Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6550–6554. doi: 10.1073/pnas.89.14.6550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Osler A. G. Immunology of reaginic allergy: in vitro studies. Clin Exp Immunol. 1970 Jan;6(1):13–23. [PMC free article] [PubMed] [Google Scholar]
  43. Oxenius A., Bachmann M. F., Ashton-Rickardt P. G., Tonegawa S., Zinkernagel R. M., Hengartner H. Presentation of endogenous viral proteins in association with major histocompatibility complex class II: on the role of intracellular compartmentalization, invariant chain and the TAP transporter system. Eur J Immunol. 1995 Dec;25(12):3402–3411. doi: 10.1002/eji.1830251230. [DOI] [PubMed] [Google Scholar]
  44. Parker D. C. T cell-dependent B cell activation. Annu Rev Immunol. 1993;11:331–360. doi: 10.1146/annurev.iy.11.040193.001555. [DOI] [PubMed] [Google Scholar]
  45. Pruslin F. H., To S. E., Winston R., Rodman T. C. Caveats and suggestions for the ELISA. J Immunol Methods. 1991 Mar 1;137(1):27–35. doi: 10.1016/0022-1759(91)90390-2. [DOI] [PubMed] [Google Scholar]
  46. Renshaw B. R., Fanslow W. C., 3rd, Armitage R. J., Campbell K. A., Liggitt D., Wright B., Davison B. L., Maliszewski C. R. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med. 1994 Nov 1;180(5):1889–1900. doi: 10.1084/jem.180.5.1889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Ron Y., De Baetselier P., Gordon J., Feldman M., Segal S. Defective induction of antigen-reactive proliferating T cells in B cell-deprived mice. Eur J Immunol. 1981 Dec;11(12):964–968. doi: 10.1002/eji.1830111203. [DOI] [PubMed] [Google Scholar]
  48. Ron Y., Sprent J. T cell priming in vivo: a major role for B cells in presenting antigen to T cells in lymph nodes. J Immunol. 1987 May 1;138(9):2848–2856. [PubMed] [Google Scholar]
  49. Roost H. P., Charan S., Zinkernagel R. M. Analysis of the kinetics of antiviral memory T help in vivo: characterization of short-lived cross-reactive T help. Eur J Immunol. 1990 Dec;20(12):2547–2554. doi: 10.1002/eji.1830201204. [DOI] [PubMed] [Google Scholar]
  50. Ruby J., Bluethmann H., Aguet M., Ramshaw I. A. CD40 ligand has potent antiviral activity. Nat Med. 1995 May;1(5):437–441. doi: 10.1038/nm0595-437. [DOI] [PubMed] [Google Scholar]
  51. Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994 Apr 1;179(4):1109–1118. doi: 10.1084/jem.179.4.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Schriever F., Freedman A. S., Freeman G., Messner E., Lee G., Daley J., Nadler L. M. Isolated human follicular dendritic cells display a unique antigenic phenotype. J Exp Med. 1989 Jun 1;169(6):2043–2058. doi: 10.1084/jem.169.6.2043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Stuber E., Strober W., Neurath M. Blocking the CD40L-CD40 interaction in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med. 1996 Feb 1;183(2):693–698. doi: 10.1084/jem.183.2.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Van den Eertwegh A. J., Noelle R. J., Roy M., Shepherd D. M., Aruffo A., Ledbetter J. A., Boersma W. J., Claassen E. In vivo CD40-gp39 interactions are essential for thymus-dependent humoral immunity. I. In vivo expression of CD40 ligand, cytokines, and antibody production delineates sites of cognate T-B cell interactions. J Exp Med. 1993 Nov 1;178(5):1555–1565. doi: 10.1084/jem.178.5.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Xu J., Foy T. M., Laman J. D., Elliott E. A., Dunn J. J., Waldschmidt T. J., Elsemore J., Noelle R. J., Flavell R. A. Mice deficient for the CD40 ligand. Immunity. 1994 Aug;1(5):423–431. doi: 10.1016/1074-7613(94)90073-6. [DOI] [PubMed] [Google Scholar]
  56. van Essen D., Kikutani H., Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature. 1995 Dec 7;378(6557):620–623. doi: 10.1038/378620a0. [DOI] [PubMed] [Google Scholar]
  57. van Ewijk W., Ron Y., Monaco J., Kappler J., Marrack P., Le Meur M., Gerlinger P., Durand B., Benoist C., Mathis D. Compartmentalization of MHC class II gene expression in transgenic mice. Cell. 1988 May 6;53(3):357–370. doi: 10.1016/0092-8674(88)90156-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES