Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 May 1;183(5):2235–2245. doi: 10.1084/jem.183.5.2235

Antigen-induced generation of lyso-phospholipids in human airways

PMCID: PMC2192563  PMID: 8642333

Abstract

The goal of the current study was to examine the formation of phospholipids, 1-radyl-2-lysosn-glycero-phospholipids (lyso-PL) and 2- acetylated phospholipids (such as PAF) as well as mechanisms responsible for generating these phospholipids in bronchoalveolar lavage fluid (BAI.F) from allergic subjects challenged with antigen. Bronchoalveolar lavage was performed in normal and allergic subjects before, 5-30 min, 6 h, and 20 h after segmental antigen challenge via a wedged bronchoscope. Levels of 1-hexadecyl-2-lyso-phospholipids and 1- hexadecyl-2-acetyl-phospholipids were initially determined by negative ion chemical ionization gas chromatography/mass spectrometry (NICI- GC/MS). Antigen dramatically elevated quantities of 1-hexadecyl-2-lyso- phospholipids in allergic subjects 20 h after challenge when compared to non-allergic controls. In contrast, there was not a significant increase in levels of 1-hexadecyl-2-acetyl-phospholipids after antigen challenge. Closer examination of 1-radyl-2-lyso-sn-glycero-3- phosphocholine (GPC) revealed that 1-palmitoyl-2-lyso-GPC, 1-myristoyl- 2-lyso-GPC and 1-hexadecyl-2-lyso-GPC were three major molecular species produced after antigen challenge. 1-palmitoyl-2-lyso-GPC increased sevenfold to levels of 222 +/- 75 ng/ml of BALF 20 h after antigen challenge. The elevated levels of lyso-PL correlated with levels of albumin used to assess plasma exudation induced by allergen challenge. In contrast, the time course of prostaglandin D2 (PGD2) or 9 alpha, 11 beta PGF2 (11 beta PGF2) formation did not correlate with lyso-PL generation. To examine the mechanism leading to lyso- phospholipid formation in antigen-challenged allergic subjects, secretory phospholipase A2 (PI.A2) and acetyl hydrolase activities were measured. There was a significant increase in PLA2 activity found in BALF of allergic subjects challenged with antigen when compared to saline controls. This activity was neutralized by an antibody directed against low molecular mass, (14 kD) human synovial PLA2 and dithiothreitol. Acetyl hydrolase activity also markedly increased in BALF obtained after antigen challenge. This study indicates that high levels of lyso-PLs are present in airways of allergic subjects challenged with antigen and provides evidence for two distinct mechanisms that could induce lyso-PL formation. Future studies will be necessary to determine the ramifications of these high levels of lyso- phospholipids on airway function.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akita H., Creer M. H., Yamada K. A., Sobel B. E., Corr P. B. Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. J Clin Invest. 1986 Jul;78(1):271–280. doi: 10.1172/JCI112561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amirkhanian J. D., Taeusch H. W. Reversible and irreversible inactivation of preformed pulmonary surfactant surface films by changes in subphase constituents. Biochim Biophys Acta. 1993 Jan 10;1165(3):321–326. doi: 10.1016/0005-2760(93)90143-w. [DOI] [PubMed] [Google Scholar]
  3. Anderson B. O., Moore E. E., Banerjee A. Phospholipase A2 regulates critical inflammatory mediators of multiple organ failure. J Surg Res. 1994 Feb;56(2):199–205. doi: 10.1006/jsre.1994.1032. [DOI] [PubMed] [Google Scholar]
  4. Boachie-Ansah G., Kane K. A., Rankin A. C. Effects of a combination of acidosis, lactate, and lysophosphatidylcholine on action potentials and ionic currents in guinea pig ventricular myocytes. J Cardiovasc Pharmacol. 1992 Oct;20(4):538–546. doi: 10.1097/00005344-199210000-00005. [DOI] [PubMed] [Google Scholar]
  5. Chen J., Engle S. J., Seilhamer J. J., Tischfield J. A. Cloning and recombinant expression of a novel human low molecular weight Ca(2+)-dependent phospholipase A2. J Biol Chem. 1994 Jan 28;269(4):2365–2368. [PubMed] [Google Scholar]
  6. Chilton F. H., Ellis J. M., Olson S. C., Wykle R. L. 1-O-alkyl-2-arachidonoyl-sn-glycero-3-phosphocholine. A common source of platelet-activating factor and arachidonate in human polymorphonuclear leukocytes. J Biol Chem. 1984 Oct 10;259(19):12014–12019. [PubMed] [Google Scholar]
  7. Chung K. F., Aizawa H., Leikauf G. D., Ueki I. F., Evans T. W., Nadel J. A. Airway hyperresponsiveness induced by platelet-activating factor: role of thromboxane generation. J Pharmacol Exp Ther. 1986 Mar;236(3):580–584. [PubMed] [Google Scholar]
  8. Clarkson C. W., Ten Eick R. E. On the mechanism of lysophosphatidylcholine-induced depolarization of cat ventricular myocardium. Circ Res. 1983 May;52(5):543–556. doi: 10.1161/01.res.52.5.543. [DOI] [PubMed] [Google Scholar]
  9. Cuss F. M., Dixon C. M., Barnes P. J. Effects of inhaled platelet activating factor on pulmonary function and bronchial responsiveness in man. Lancet. 1986 Jul 26;2(8500):189–192. doi: 10.1016/s0140-6736(86)92489-x. [DOI] [PubMed] [Google Scholar]
  10. Denjean A., Arnoux B., Masse R., Lockhart A., Benveniste J. Acute effects of intratracheal administration of platelet-activating factor in baboons. J Appl Physiol Respir Environ Exerc Physiol. 1983 Sep;55(3):799–804. doi: 10.1152/jappl.1983.55.3.799. [DOI] [PubMed] [Google Scholar]
  11. Dennis E. A. Diversity of group types, regulation, and function of phospholipase A2. J Biol Chem. 1994 May 6;269(18):13057–13060. [PubMed] [Google Scholar]
  12. Djukanović R., Roche W. R., Wilson J. W., Beasley C. R., Twentyman O. P., Howarth R. H., Holgate S. T. Mucosal inflammation in asthma. Am Rev Respir Dis. 1990 Aug;142(2):434–457. doi: 10.1164/ajrccm/142.2.434. [DOI] [PubMed] [Google Scholar]
  13. Elstad M. R., Stafforini D. M., Prescott S. M., McIntyre T. M., Zimmerman G. A. Human macrophages secrete platelet-activating factor acetylhydrolase. A mechanism for resolution of pulmonary inflammation. Chest. 1991 Mar;99(3 Suppl):9S–10S. doi: 10.1378/chest.99.3_supplement.9s. [DOI] [PubMed] [Google Scholar]
  14. Farr R. S., Wardlow M. L., Cox C. P., Meng K. E., Greene D. E. Human serum acid-labile factor is an acylhydrolase that inactivates platelet-activating factor. Fed Proc. 1983 Nov;42(14):3120–3122. [PubMed] [Google Scholar]
  15. Fonteh A. N., Bass D. A., Marshall L. A., Seeds M., Samet J. M., Chilton F. H. Evidence that secretory phospholipase A2 plays a role in arachidonic acid release and eicosanoid biosynthesis by mast cells. J Immunol. 1994 Jun 1;152(11):5438–5446. [PubMed] [Google Scholar]
  16. Forst S., Weiss J., Elsbach P., Maraganore J. M., Reardon I., Heinrikson R. L. Structural and functional properties of a phospholipase A2 purified from an inflammatory exudate. Biochemistry. 1986 Dec 30;25(26):8381–8385. doi: 10.1021/bi00374a008. [DOI] [PubMed] [Google Scholar]
  17. Govier W. C., Boadle M. C. The cardiac action of lysolecithin. J Pharmacol Exp Ther. 1967 May;156(2):339–344. [PubMed] [Google Scholar]
  18. Henson P. M., Barnes P. J., Banks-Schlegel S. P. NHLBI workshop summary. Platelet-activating factor: role in pulmonary injury and dysfunction and blood abnormalities. Am Rev Respir Dis. 1992 Mar;145(3):726–731. doi: 10.1164/ajrccm/145.3.726. [DOI] [PubMed] [Google Scholar]
  19. Ishizaki J., Hanasaki K., Higashino K., Kishino J., Kikuchi N., Ohara O., Arita H. Molecular cloning of pancreatic group I phospholipase A2 receptor. J Biol Chem. 1994 Feb 25;269(8):5897–5904. [PubMed] [Google Scholar]
  20. Janero D. R., Burghardt C. Solid-phase extraction on silica cartridges as an aid to platelet-activating factor enrichment and analysis. J Chromatogr. 1990 Mar 16;526(1):11–24. doi: 10.1016/s0378-4347(00)82479-2. [DOI] [PubMed] [Google Scholar]
  21. Kramer R. M., Hession C., Johansen B., Hayes G., McGray P., Chow E. P., Tizard R., Pepinsky R. B. Structure and properties of a human non-pancreatic phospholipase A2. J Biol Chem. 1989 Apr 5;264(10):5768–5775. [PubMed] [Google Scholar]
  22. Kume N., Gimbrone M. A., Jr Lysophosphatidylcholine transcriptionally induces growth factor gene expression in cultured human endothelial cells. J Clin Invest. 1994 Feb;93(2):907–911. doi: 10.1172/JCI117047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lambeau G., Ancian P., Barhanin J., Lazdunski M. Cloning and expression of a membrane receptor for secretory phospholipases A2. J Biol Chem. 1994 Jan 21;269(3):1575–1578. [PubMed] [Google Scholar]
  24. Lindahl M., Hede A. R., Tagesson C. Lysophosphatidylcholine increases airway and capillary permeability in the isolated perfused rat lung. Exp Lung Res. 1986;11(1):1–12. doi: 10.3109/01902148609062823. [DOI] [PubMed] [Google Scholar]
  25. Liu E., Goldhaber J. I., Weiss J. N. Effects of lysophosphatidylcholine on electrophysiological properties and excitation-contraction coupling in isolated guinea pig ventricular myocytes. J Clin Invest. 1991 Dec;88(6):1819–1832. doi: 10.1172/JCI115503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Liu M. C., Bleecker E. R., Lichtenstein L. M., Kagey-Sobotka A., Niv Y., McLemore T. L., Permutt S., Proud D., Hubbard W. C. Evidence for elevated levels of histamine, prostaglandin D2, and other bronchoconstricting prostaglandins in the airways of subjects with mild asthma. Am Rev Respir Dis. 1990 Jul;142(1):126–132. doi: 10.1164/ajrccm/142.1.126. [DOI] [PubMed] [Google Scholar]
  27. Liu M. C., Hubbard W. C., Proud D., Stealey B. A., Galli S. J., Kagey-Sobotka A., Bleecker E. R., Lichtenstein L. M. Immediate and late inflammatory responses to ragweed antigen challenge of the peripheral airways in allergic asthmatics. Cellular, mediator, and permeability changes. Am Rev Respir Dis. 1991 Jul;144(1):51–58. doi: 10.1164/ajrccm/144.1.51. [DOI] [PubMed] [Google Scholar]
  28. Man R. Y. Lysophosphatidylcholine-induced arrhythmias and its accumulation in the rat perfused heart. Br J Pharmacol. 1988 Feb;93(2):412–416. doi: 10.1111/j.1476-5381.1988.tb11448.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mencia-Huerta J. M., Lewis R. A., Razin E., Austen K. F. Antigen-initiated release of platelet-activating factor (PAF-acether) from mouse bone marrow-derived mast cells sensitized with monoclonal IgE. J Immunol. 1983 Dec;131(6):2958–2964. [PubMed] [Google Scholar]
  30. Mizushima H., Kudo I., Horigome K., Murakami M., Hayakawa M., Kim D. K., Kondo E., Tomita M., Inoue K. Purification of rabbit platelet secretory phospholipase A2 and its characteristics. J Biochem. 1989 Apr;105(4):520–525. doi: 10.1093/oxfordjournals.jbchem.a122699. [DOI] [PubMed] [Google Scholar]
  31. Murakami M., Kudo I., Suwa Y., Inoue K. Release of 14-kDa group-II phospholipase A2 from activated mast cells and its possible involvement in the regulation of the degranulation process. Eur J Biochem. 1992 Oct 1;209(1):257–265. doi: 10.1111/j.1432-1033.1992.tb17284.x. [DOI] [PubMed] [Google Scholar]
  32. Murphy R. C., Clay K. L. Measurement of platelet-activating factor by physicochemical technique s. Am Rev Respir Dis. 1987 Jul;136(1):207–210. doi: 10.1164/ajrccm/136.1.207. [DOI] [PubMed] [Google Scholar]
  33. Nakamura T., Morita Y., Kuriyama M., Ishihara K., Ito K., Miyamoto T. Platelet-activating factor in late asthmatic response. Int Arch Allergy Appl Immunol. 1987;82(1):57–61. doi: 10.1159/000234290. [DOI] [PubMed] [Google Scholar]
  34. Nakano T., Raines E. W., Abraham J. A., Klagsbrun M., Ross R. Lysophosphatidylcholine upregulates the level of heparin-binding epidermal growth factor-like growth factor mRNA in human monocytes. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):1069–1073. doi: 10.1073/pnas.91.3.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nevalainen T. J. Serum phospholipases A2 in inflammatory diseases. Clin Chem. 1993 Dec;39(12):2453–2459. [PubMed] [Google Scholar]
  36. Niewoehner D. E., Rice K., Duane P., Sinha A. A., Gebhard R., Wangensteen D. Induction of alveolar epithelial injury by phospholipase A2. J Appl Physiol (1985) 1989 Jan;66(1):261–267. doi: 10.1152/jappl.1989.66.1.261. [DOI] [PubMed] [Google Scholar]
  37. Niewoehner D. E., Rice K., Sinha A. A., Wangensteen D. Injurious effects of lysophosphatidylcholine on barrier properties of alveolar epithelium. J Appl Physiol (1985) 1987 Nov;63(5):1979–1986. doi: 10.1152/jappl.1987.63.5.1979. [DOI] [PubMed] [Google Scholar]
  38. Patterson R., Bernstein P. R., Harris K. E., Krell R. D. Airway responses to sequential challenges with platelet-activating factor and leukotriene D4 in rhesus monkeys. J Lab Clin Med. 1984 Sep;104(3):340–345. [PubMed] [Google Scholar]
  39. Pruzanski W., Vadas P., Stefanski E., Urowitz M. B. Phospholipase A2 activity in sera and synovial fluids in rheumatoid arthritis and osteoarthritis. Its possible role as a proinflammatory enzyme. J Rheumatol. 1985 Apr;12(2):211–216. [PubMed] [Google Scholar]
  40. Ramesha C. S., Pickett W. C. Measurement of sub-picogram quantities of platelet activating factor (AGEPC) by gas chromatography/negative ion chemical ionization mass spectrometry. Biomed Environ Mass Spectrom. 1986 Mar;13(3):107–111. doi: 10.1002/bms.1200130302. [DOI] [PubMed] [Google Scholar]
  41. Rennard S. I., Basset G., Lecossier D., O'Donnell K. M., Pinkston P., Martin P. G., Crystal R. G. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol (1985) 1986 Feb;60(2):532–538. doi: 10.1152/jappl.1986.60.2.532. [DOI] [PubMed] [Google Scholar]
  42. Rice K. L., Duane P. G., Niewoehner D. E. Effects of phospholipase A2 and its hydrolytic products on alveolar epithelial permeability and elastase-induced emphysema. Am Rev Respir Dis. 1988 Nov;138(5):1196–1200. doi: 10.1164/ajrccm/138.5.1196. [DOI] [PubMed] [Google Scholar]
  43. Rubin A. H., Smith L. J., Patterson R. The bronchoconstrictor properties of platelet-activating factor in humans. Am Rev Respir Dis. 1987 Nov;136(5):1145–1151. doi: 10.1164/ajrccm/136.5.1145. [DOI] [PubMed] [Google Scholar]
  44. Sargent C. A., Vesterqvist O., Ogletree M. L., Grover G. J. Effects of endogenous and exogenous lysophosphatidylcholine in isolated perfused rat hearts. J Mol Cell Cardiol. 1993 Aug;25(8):905–913. doi: 10.1006/jmcc.1993.1103. [DOI] [PubMed] [Google Scholar]
  45. Sedlis S. P., Hom M., Sequeira J. M., Esposito R. Lysophosphatidylcholine accumulation in ischemic human myocardium. J Lab Clin Med. 1993 Jan;121(1):111–117. [PubMed] [Google Scholar]
  46. Sedlis S. P., Sequeira J. M., Ahumada G. G., el Sherif N. Effects of lysophosphatidylcholine on cultured heart cells: correlation of rate of uptake and extent of accumulation with cell injury. J Lab Clin Med. 1988 Dec;112(6):745–754. [PubMed] [Google Scholar]
  47. Seilhamer J. J., Pruzanski W., Vadas P., Plant S., Miller J. A., Kloss J., Johnson L. K. Cloning and recombinant expression of phospholipase A2 present in rheumatoid arthritic synovial fluid. J Biol Chem. 1989 Apr 5;264(10):5335–5338. [PubMed] [Google Scholar]
  48. Shin M. H., Averill F. J., Hubbard W. C., Chilton F. H., Baroody F. M., Liu M. C., Naclerio R. M. Nasal allergen challenge generates 1-0-hexadecyl-2-lyso-sn-glycero-3-phosphocholine. Am J Respir Crit Care Med. 1994 Mar;149(3 Pt 1):660–666. doi: 10.1164/ajrccm.149.3.8118633. [DOI] [PubMed] [Google Scholar]
  49. Smith L. J., Rubin A. H., Patterson R. Mechanism of platelet activating factor-induced bronchoconstriction in humans. Am Rev Respir Dis. 1988 May;137(5):1015–1019. doi: 10.1164/ajrccm/137.5.1015. [DOI] [PubMed] [Google Scholar]
  50. Snyder D. W., Crafford W. A., Jr, Glashow J. L., Rankin D., Sobel B. E., Corr P. B. Lysophosphoglycerides in ischemic myocardium effluents and potentiation of their arrhythmogenic effects. Am J Physiol. 1981 Nov;241(5):H700–H707. doi: 10.1152/ajpheart.1981.241.5.H700. [DOI] [PubMed] [Google Scholar]
  51. Stadel J. M., Hoyle K., Naclerio R. M., Roshak A., Chilton F. H. Characterization of phospholipase A2 from human nasal lavage. Am J Respir Cell Mol Biol. 1994 Jul;11(1):108–113. doi: 10.1165/ajrcmb.11.1.8018333. [DOI] [PubMed] [Google Scholar]
  52. Stafforini D. M., Rollins E. N., Prescott S. M., McIntyre T. M. The platelet-activating factor acetylhydrolase from human erythrocytes. Purification and properties. J Biol Chem. 1993 Feb 25;268(6):3857–3865. [PubMed] [Google Scholar]
  53. Stenton S. C., Court E. N., Kingston W. P., Goadby P., Kelly C. A., Duddridge M., Ward C., Hendrick D. J., Walters E. H. Platelet-activating factor in bronchoalveolar lavage fluid from asthmatic subjects. Eur Respir J. 1990 Apr;3(4):408–413. [PubMed] [Google Scholar]
  54. Stimler N. P., O'Flaherty J. T. Spasmogenic properties of platelet-activating factor: evidence for a direct mechanism in the contractile response of pulmonary tissues. Am J Pathol. 1983 Oct;113(1):75–84. [PMC free article] [PubMed] [Google Scholar]
  55. Tjoelker L. W., Wilder C., Eberhardt C., Stafforini D. M., Dietsch G., Schimpf B., Hooper S., Le Trong H., Cousens L. S., Zimmerman G. A. Anti-inflammatory properties of a platelet-activating factor acetylhydrolase. Nature. 1995 Apr 6;374(6522):549–553. doi: 10.1038/374549a0. [DOI] [PubMed] [Google Scholar]
  56. Touqui L., Herpin-Richard N., Gene R. M., Jullian E., Aljabi D., Hamberger C., Vargaftig B. B., Dessange J. F. Excretion of platelet activating factor-acetylhydrolase and phospholipase A2 into nasal fluids after allergenic challenge: possible role in the regulation of platelet activating factor release. J Allergy Clin Immunol. 1994 Jul;94(1):109–119. doi: 10.1016/0091-6749(94)90077-9. [DOI] [PubMed] [Google Scholar]
  57. Triggiani M., Hubbard W. C., Chilton F. H. Synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine by an enriched preparation of the human lung mast cell. J Immunol. 1990 Jun 15;144(12):4773–4780. [PubMed] [Google Scholar]
  58. Triggiani M., Schleimer R. P., Warner J. A., Chilton F. H. Differential synthesis of 1-acyl-2-acetyl-sn-glycero-3-phosphocholine and platelet-activating factor by human inflammatory cells. J Immunol. 1991 Jul 15;147(2):660–666. [PubMed] [Google Scholar]
  59. Vargaftig B. B., Lefort J., Chignard M., Benveniste J. Platelet-activating factor induces a platelet-dependent bronchoconstriction unrelated to the formation of prostaglandin derivatives. Eur J Pharmacol. 1980 Jul 25;65(2-3):185–192. doi: 10.1016/0014-2999(80)90391-x. [DOI] [PubMed] [Google Scholar]
  60. Wasserman S. I. Platelet-activating factor as a mediator of bronchial asthma. Hosp Pract (Off Ed) 1988 Nov 15;23(11):49–58. doi: 10.1080/21548331.1988.11703580. [DOI] [PubMed] [Google Scholar]
  61. Watson A. D., Navab M., Hama S. Y., Sevanian A., Prescott S. M., Stafforini D. M., McIntyre T. M., Du B. N., Fogelman A. M., Berliner J. A. Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein. J Clin Invest. 1995 Feb;95(2):774–782. doi: 10.1172/JCI117726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Weltzien H. U. Cytolytic and membrane-perturbing properties of lysophosphatidylcholine. Biochim Biophys Acta. 1979 Aug 20;559(2-3):259–287. doi: 10.1016/0304-4157(79)90004-2. [DOI] [PubMed] [Google Scholar]
  63. Woodley S. L., Ikenouchi H., Barry W. H. Lysophosphatidylcholine increases cytosolic calcium in ventricular myocytes by direct action on the sarcolemma. J Mol Cell Cardiol. 1991 Jun;23(6):671–680. doi: 10.1016/0022-2828(91)90977-t. [DOI] [PubMed] [Google Scholar]
  64. Zimmerman G. A., Prescott S. M., McIntyre T. M. Oxidatively fragmented phospholipids as inflammatory mediators: the dark side of polyunsaturated lipids. J Nutr. 1995 Jun;125(6 Suppl):1661S–1665S. doi: 10.1093/jn/125.suppl_6.1661S. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES