Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 May 1;183(5):2197–2207. doi: 10.1084/jem.183.5.2197

An autosomal dominant locus, Nka, mapping to the Ly-49 region of a rat natural killer (NK) gene complex, controls NK cell lysis of allogeneic lymphocytes

PMCID: PMC2192580  PMID: 8642329

Abstract

Natural Killer (NK) cells can recognize and kill MHC-incompatible normal bone marrow-derived cells. Presently characterized MHC-binding receptors on NK cells, including the Ly-49 family in the mouse, transmit inhibitory signals upon binding to cognate class I MHC ligands. Here we study in vivo NK-mediated lysis of normal allogeneic lymphocytes in crosses between alloreactivity-competent PVG rats and alloreactivity-deficient DA rats. NK cells from both strains are able to lyse standard tumor targets. We identify an autosomal dominant locus, Nka, that controls NK-mediated alloreactivity. Individuals carrying the dominant PVG allele in single dose were fully competent in eliminating allogeneic target cells, suggesting that Nka encodes or regulates a gene product inducing or activating alloreactivity. By linkage analysis and pulsed field gel electrophoresis, a natural killer gene complex (NKC) on rat chromosome 4 is described that contains the rat NKR-P1 and Ly-49 multigene families plus a rat NKG2D homologue. Nka maps within the NKC, together with the most telomeric Ly-49 family members, but separate from NKG2D and the NKR-P1 family. The Nka-encoded response, moreover, correlates with the expression of transcripts for Ly-49 receptors in NK cell populations, as Northern blot analysis demonstrated low expression of Ly-49 genes in DA NK cells, in contrast to high expression in alloreactivity-competent PVG, (DA X PVG)F1, and PVG.1AVI NK cells. The low Ly-49 expression in DA is not induced by MHC haplotype, as demonstrated by high expression of Ly-49 in the DA MHC- congenic PVG.1AVI strain. Finally, we have cloned and characterized the first four members of the rat Ly-49 gene family. Their cytoplasmic domains demonstrate substantial heterogeneity, consistent with the hypothesis that different Ly-49 family members may subserve different signaling functions.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamkiewicz T. V., McSherry C., Bach F. H., Houchins J. P. Natural killer lectin-like receptors have divergent carboxy-termini, distinct from C-type lectins. Immunogenetics. 1994;39(3):218–218. doi: 10.1007/BF00241264. [DOI] [PubMed] [Google Scholar]
  2. Brennan J., Mager D., Jefferies W., Takei F. Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties. J Exp Med. 1994 Dec 1;180(6):2287–2295. doi: 10.1084/jem.180.6.2287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chambers W. H., Vujanovic N. L., DeLeo A. B., Olszowy M. W., Herberman R. B., Hiserodt J. C. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med. 1989 Apr 1;169(4):1373–1389. doi: 10.1084/jem.169.4.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang C., Rodríguez A., Carretero M., López-Botet M., Phillips J. H., Lanier L. L. Molecular characterization of human CD94: a type II membrane glycoprotein related to the C-type lectin superfamily. Eur J Immunol. 1995 Sep;25(9):2433–2437. doi: 10.1002/eji.1830250904. [DOI] [PubMed] [Google Scholar]
  5. Ciccone E., Pende D., Viale O., Than A., Di Donato C., Orengo A. M., Biassoni R., Verdiani S., Amoroso A., Moretta A. Involvement of HLA class I alleles in natural killer (NK) cell-specific functions: expression of HLA-Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med. 1992 Oct 1;176(4):963–971. doi: 10.1084/jem.176.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ciccone E., Viale O., Pende D., Malnati M., Biassoni R., Melioli G., Moretta A., Long E. O., Moretta L. Specific lysis of allogeneic cells after activation of CD3- lymphocytes in mixed lymphocyte culture. J Exp Med. 1988 Dec 1;168(6):2403–2408. doi: 10.1084/jem.168.6.2403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cleveland D. W., Lopata M. A., MacDonald R. J., Cowan N. J., Rutter W. J., Kirschner M. W. Number and evolutionary conservation of alpha- and beta-tubulin and cytoplasmic beta- and gamma-actin genes using specific cloned cDNA probes. Cell. 1980 May;20(1):95–105. doi: 10.1016/0092-8674(80)90238-x. [DOI] [PubMed] [Google Scholar]
  8. Colonna M., Samaridis J. Cloning of immunoglobulin-superfamily members associated with HLA-C and HLA-B recognition by human natural killer cells. Science. 1995 Apr 21;268(5209):405–408. doi: 10.1126/science.7716543. [DOI] [PubMed] [Google Scholar]
  9. D'Andrea A., Chang C., Franz-Bacon K., McClanahan T., Phillips J. H., Lanier L. L. Molecular cloning of NKB1. A natural killer cell receptor for HLA-B allotypes. J Immunol. 1995 Sep 1;155(5):2306–2310. [PubMed] [Google Scholar]
  10. Dallman M. J., Thomas M. L., Green J. R. MRC OX-19: a monoclonal antibody that labels rat T lymphocytes and augments in vitro proliferative responses. Eur J Immunol. 1984 Mar;14(3):260–267. doi: 10.1002/eji.1830140311. [DOI] [PubMed] [Google Scholar]
  11. Daniels B. F., Karlhofer F. M., Seaman W. E., Yokoyama W. M. A natural killer cell receptor specific for a major histocompatibility complex class I molecule. J Exp Med. 1994 Aug 1;180(2):687–692. doi: 10.1084/jem.180.2.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dissen E., Vaage J. T., Taskén K., Jahnsen T., Rolstad B., Fossum S. Alloreactive lymphokine-activated killer cells from athymic nude rats do not express CD3-associated alpha/beta or gamma/delta T cell receptors. Int Immunol. 1990;2(5):453–460. doi: 10.1093/intimm/2.5.453. [DOI] [PubMed] [Google Scholar]
  13. Elliott R. W., Moore K. J. Mouse chromosome 6. Mamm Genome. 1994;5(Spec No):S79–103. [PubMed] [Google Scholar]
  14. Fossum S., Ager A., Rolstad B. Specific inhibition of natural killer (NK) activity against different alloantigens. Immunogenetics. 1987;26(6):329–338. doi: 10.1007/BF00343700. [DOI] [PubMed] [Google Scholar]
  15. Giorda R., Rudert W. A., Vavassori C., Chambers W. H., Hiserodt J. C., Trucco M. NKR-P1, a signal transduction molecule on natural killer cells. Science. 1990 Sep 14;249(4974):1298–1300. doi: 10.1126/science.2399464. [DOI] [PubMed] [Google Scholar]
  16. Giorda R., Trucco M. Mouse NKR-P1. A family of genes selectively coexpressed in adherent lymphokine-activated killer cells. J Immunol. 1991 Sep 1;147(5):1701–1708. [PubMed] [Google Scholar]
  17. Gumperz J. E., Litwin V., Phillips J. H., Lanier L. L., Parham P. The Bw4 public epitope of HLA-B molecules confers reactivity with natural killer cell clones that express NKB1, a putative HLA receptor. J Exp Med. 1995 Mar 1;181(3):1133–1144. doi: 10.1084/jem.181.3.1133. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Houchins J. P., Yabe T., McSherry C., Bach F. H. DNA sequence analysis of NKG2, a family of related cDNA clones encoding type II integral membrane proteins on human natural killer cells. J Exp Med. 1991 Apr 1;173(4):1017–1020. doi: 10.1084/jem.173.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hünig T., Wallny H. J., Hartley J. K., Lawetzky A., Tiefenthaler G. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J Exp Med. 1989 Jan 1;169(1):73–86. doi: 10.1084/jem.169.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ikezu T., Okamoto T., Ogata E., Nishimoto I. Amino acids 356-372 constitute a Gi-activator sequence of the alpha 2-adrenergic receptor and have a Phe substitute in the G protein-activator sequence motif. FEBS Lett. 1992 Oct 12;311(1):29–32. doi: 10.1016/0014-5793(92)81359-t. [DOI] [PubMed] [Google Scholar]
  21. Kane K. P. Ly-49 mediates EL4 lymphoma adhesion to isolated class I major histocompatibility complex molecules. J Exp Med. 1994 Mar 1;179(3):1011–1015. doi: 10.1084/jem.179.3.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaprielian Z., Cho K. O., Hadjiargyrou M., Patterson P. H. CD9, a major platelet cell surface glycoprotein, is a ROCA antigen and is expressed in the nervous system. J Neurosci. 1995 Jan;15(1 Pt 2):562–573. doi: 10.1523/JNEUROSCI.15-01-00562.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karlhofer F. M., Hunziker R., Reichlin A., Margulies D. H., Yokoyama W. M. Host MHC class I molecules modulate in vivo expression of a NK cell receptor. J Immunol. 1994 Sep 15;153(6):2407–2416. [PubMed] [Google Scholar]
  24. Karlhofer F. M., Ribaudo R. K., Yokoyama W. M. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature. 1992 Jul 2;358(6381):66–70. doi: 10.1038/358066a0. [DOI] [PubMed] [Google Scholar]
  25. Kubo S., Itoh Y., Ishikawa N., Nagasawa R., Mitarai T., Maruyama N. The gene encoding mouse lymphocyte antigen Ly-49: structural analysis and the 5'-flanking sequence. Gene. 1993 Dec 22;136(1-2):329–331. doi: 10.1016/0378-1119(93)90489-p. [DOI] [PubMed] [Google Scholar]
  26. Lanier L. L., Chang C., Phillips J. H. Human NKR-P1A. A disulfide-linked homodimer of the C-type lectin superfamily expressed by a subset of NK and T lymphocytes. J Immunol. 1994 Sep 15;153(6):2417–2428. [PubMed] [Google Scholar]
  27. Levan G., Szpirer J., Szpirer C., Klinga K., Hanson C., Islam M. Q. The gene map of the Norway rat (Rattus norvegicus) and comparative mapping with mouse and man. Genomics. 1991 Jul;10(3):699–718. doi: 10.1016/0888-7543(91)90455-n. [DOI] [PubMed] [Google Scholar]
  28. Litwin V., Gumperz J., Parham P., Phillips J. H., Lanier L. L. Specificity of HLA class I antigen recognition by human NK clones: evidence for clonal heterogeneity, protection by self and non-self alleles, and influence of the target cell type. J Exp Med. 1993 Oct 1;178(4):1321–1336. doi: 10.1084/jem.178.4.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ljunggren H. G., Kärre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. 1990 Jul;11(7):237–244. doi: 10.1016/0167-5699(90)90097-s. [DOI] [PubMed] [Google Scholar]
  30. Løvik G., Vaage J. T., Naper C., Benestad H. B., Rolstad B. Recruitment of alloreactive natural killer cells to the rat peritoneum by a transfected cell line secreting rat recombinant interleukin-2. J Immunol Methods. 1995 Feb 13;179(1):59–69. doi: 10.1016/0022-1759(94)00270-7. [DOI] [PubMed] [Google Scholar]
  31. McKnight A. J., Classon B. J. Biochemical and immunological properties of rat recombinant interleukin-2 and interleukin-4. Immunology. 1992 Feb;75(2):286–292. [PMC free article] [PubMed] [Google Scholar]
  32. Moretta A., Bottino C., Pende D., Tripodi G., Tambussi G., Viale O., Orengo A., Barbaresi M., Merli A., Ciccone E. Identification of four subsets of human CD3-CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med. 1990 Dec 1;172(6):1589–1598. doi: 10.1084/jem.172.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Moretta A., Sivori S., Vitale M., Pende D., Morelli L., Augugliaro R., Bottino C., Moretta L. Existence of both inhibitory (p58) and activatory (p50) receptors for HLA-C molecules in human natural killer cells. J Exp Med. 1995 Sep 1;182(3):875–884. doi: 10.1084/jem.182.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Moretta A., Vitale M., Bottino C., Orengo A. M., Morelli L., Augugliaro R., Barbaresi M., Ciccone E., Moretta L. P58 molecules as putative receptors for major histocompatibility complex (MHC) class I molecules in human natural killer (NK) cells. Anti-p58 antibodies reconstitute lysis of MHC class I-protected cells in NK clones displaying different specificities. J Exp Med. 1993 Aug 1;178(2):597–604. doi: 10.1084/jem.178.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Murphy W. J., Kumar V., Bennett M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (SCID). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J Exp Med. 1987 Apr 1;165(4):1212–1217. doi: 10.1084/jem.165.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ohlén C., Kling G., Höglund P., Hansson M., Scangos G., Bieberich C., Jay G., Kärre K. Prevention of allogeneic bone marrow graft rejection by H-2 transgene in donor mice. Science. 1989 Nov 3;246(4930):666–668. doi: 10.1126/science.2814488. [DOI] [PubMed] [Google Scholar]
  37. Okamoto T., Katada T., Murayama Y., Ui M., Ogata E., Nishimoto I. A simple structure encodes G protein-activating function of the IGF-II/mannose 6-phosphate receptor. Cell. 1990 Aug 24;62(4):709–717. doi: 10.1016/0092-8674(90)90116-v. [DOI] [PubMed] [Google Scholar]
  38. Olsson M. Y., Kärre K., Sentman C. L. Altered phenotype and function of natural killer cells expressing the major histocompatibility complex receptor Ly-49 in mice transgenic for its ligand. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1649–1653. doi: 10.1073/pnas.92.5.1649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pérez-Villar J. J., Melero I., Rodríguez A., Carretero M., Aramburu J., Sivori S., Orengo A. M., Moretta A., López-Botet M. Functional ambivalence of the Kp43 (CD94) NK cell-associated surface antigen. J Immunol. 1995 Jun 1;154(11):5779–5788. [PubMed] [Google Scholar]
  40. Rolstad B., Fossum S. Allogeneic lymphocyte cytotoxicity (ALC) in rats: establishment of an in vitro assay, and direct evidence that cells with natural killer (NK) activity are involved in ALC. Immunology. 1987 Feb;60(2):151–157. [PMC free article] [PubMed] [Google Scholar]
  41. Ryan J. C., Niemi E. C., Goldfien R. D., Hiserodt J. C., Seaman W. E. NKR-P1, an activating molecule on rat natural killer cells, stimulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol. 1991 Nov 1;147(9):3244–3250. [PubMed] [Google Scholar]
  42. Scalzo A. A., Fitzgerald N. A., Wallace C. R., Gibbons A. E., Smart Y. C., Burton R. C., Shellam G. R. The effect of the Cmv-1 resistance gene, which is linked to the natural killer cell gene complex, is mediated by natural killer cells. J Immunol. 1992 Jul 15;149(2):581–589. [PubMed] [Google Scholar]
  43. Schnittger S., Hamann J., Dannenberg C., Fiebig H., Strauss M., Fonatsch C. Regional sublocalization of the human CD69 gene to chromosome bands 12p12.3-p13.2, the predicted region of the human natural killer cell gene complex. Eur J Immunol. 1993 Oct;23(10):2711–2713. doi: 10.1002/eji.1830231051. [DOI] [PubMed] [Google Scholar]
  44. Sentman C. L., Kumar V., Bennett M. Rejection of bone marrow cell allografts by natural killer cell subsets: 5E6+ cell specificity for Hh-1 determinant 2 shared by H-2d and H-2f. Eur J Immunol. 1991 Nov;21(11):2821–2828. doi: 10.1002/eji.1830211125. [DOI] [PubMed] [Google Scholar]
  45. Sentman C. L., Kumar V., Koo G., Bennett M. Effector cell expression of NK1.1, a murine natural killer cell-specific molecule, and ability of mice to reject bone marrow allografts. J Immunol. 1989 Mar 15;142(6):1847–1853. [PubMed] [Google Scholar]
  46. Sheppard H. W., Gutman G. A. Allelic forms of rat kappa chain genes: evidence for strong selection at the level of nucleotide sequence. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7064–7068. doi: 10.1073/pnas.78.11.7064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Smith H. R., Karlhofer F. M., Yokoyama W. M. Ly-49 multigene family expressed by IL-2-activated NK cells. J Immunol. 1994 Aug 1;153(3):1068–1079. [PubMed] [Google Scholar]
  48. Stoneman E. R., Bennett M., An J., Chesnut K. A., Wakeland E. K., Scheerer J. B., Siciliano M. J., Kumar V., Mathew P. A. Cloning and characterization of 5E6(Ly-49C), a receptor molecule expressed on a subset of murine natural killer cells. J Exp Med. 1995 Aug 1;182(2):305–313. doi: 10.1084/jem.182.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Sykes M., Harty M. W., Karlhofer F. M., Pearson D. A., Szot G., Yokoyama W. Hematopoietic cells and radioresistant host elements influence natural killer cell differentiation. J Exp Med. 1993 Jul 1;178(1):223–229. doi: 10.1084/jem.178.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tanaka T., Masuko T., Yagita H., Tamura T., Hashimoto Y. Characterization of a CD3-like rat T cell surface antigen recognized by a monoclonal antibody. J Immunol. 1989 Apr 15;142(8):2791–2795. [PubMed] [Google Scholar]
  51. Trinchieri G. Biology of natural killer cells. Adv Immunol. 1989;47:187–376. doi: 10.1016/S0065-2776(08)60664-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vaage J. T., Dissen E., Ager A., Fossum S., Rolstad B. Allospecific recognition of hemic cells in vitro by natural killer cells from athymic rats: evidence that allodeterminants coded for by single major histocompatibility complex haplotypes are recognized. Eur J Immunol. 1991 Sep;21(9):2167–2175. doi: 10.1002/eji.1830210927. [DOI] [PubMed] [Google Scholar]
  53. Vaage J. T., Naper C., Løvik G., Lambracht D., Rehm A., Hedrich H. J., Wonigeit K., Rolstad B. Control of rat natural killer cell-mediated allorecognition by a major histocompatibility complex region encoding nonclassical class I antigens. J Exp Med. 1994 Aug 1;180(2):641–651. doi: 10.1084/jem.180.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wagtmann N., Biassoni R., Cantoni C., Verdiani S., Malnati M. S., Vitale M., Bottino C., Moretta L., Moretta A., Long E. O. Molecular clones of the p58 NK cell receptor reveal immunoglobulin-related molecules with diversity in both the extra- and intracellular domains. Immunity. 1995 May;2(5):439–449. doi: 10.1016/1074-7613(95)90025-x. [DOI] [PubMed] [Google Scholar]
  55. Yabe T., McSherry C., Bach F. H., Fisch P., Schall R. P., Sondel P. M., Houchins J. P. A multigene family on human chromosome 12 encodes natural killer-cell lectins. Immunogenetics. 1993;37(6):455–460. doi: 10.1007/BF00222470. [DOI] [PubMed] [Google Scholar]
  56. Yasuda T., Banville D., Rabbani S. A., Hendy G. N., Goltzman D. Rat parathyroid hormone-like peptide: comparison with the human homologue and expression in malignant and normal tissue. Mol Endocrinol. 1989 Mar;3(3):518–525. doi: 10.1210/mend-3-3-518. [DOI] [PubMed] [Google Scholar]
  57. Yokoyama W. M., Jacobs L. B., Kanagawa O., Shevach E. M., Cohen D. I. A murine T lymphocyte antigen belongs to a supergene family of type II integral membrane proteins. J Immunol. 1989 Aug 15;143(4):1379–1386. [PubMed] [Google Scholar]
  58. Yokoyama W. M., Kehn P. J., Cohen D. I., Shevach E. M. Chromosomal location of the Ly-49 (A1, YE1/48) multigene family. Genetic association with the NK 1.1 antigen. J Immunol. 1990 Oct 1;145(7):2353–2358. [PubMed] [Google Scholar]
  59. Yokoyama W. M., Ryan J. C., Hunter J. J., Smith H. R., Stark M., Seaman W. E. cDNA cloning of mouse NKR-P1 and genetic linkage with LY-49. Identification of a natural killer cell gene complex on mouse chromosome 6. J Immunol. 1991 Nov 1;147(9):3229–3236. [PubMed] [Google Scholar]
  60. Ziegler S. F., Levin S. D., Johnson L., Copeland N. G., Gilbert D. J., Jenkins N. A., Baker E., Sutherland G. R., Feldhaus A. L., Ramsdell F. The mouse CD69 gene. Structure, expression, and mapping to the NK gene complex. J Immunol. 1994 Feb 1;152(3):1228–1236. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES