Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 May 1;183(5):2355–2360. doi: 10.1084/jem.183.5.2355

Protection from anti-TCR/CD3-induced apoptosis in immature thymocytes by a signal through thymic shared antigen-1/stem cell antigen-2

PMCID: PMC2192583  PMID: 8642345

Abstract

During T cell development in the thymus, the expression of thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2), a glycosylphosphatidylinositol (GPI)-anchored differentiation antigen, is developmentally regulated. The expression level of TSA-1 is the highest in most immature CD4- CD8- thymocytes, high in CD4+ CD8+ thymocytes, but barely detectable in mature CD4+ CD8- or CD4- CD8- thymocytes and peripheral T cells. We have previously shown that surface TSA-1 expression in peripheral T cells is induced upon activation and that anti-TSA-1 mAb inhibits the T cell receptor (TCR) signaling pathway in activated T cells. In the present study, we have analyzed a role of TSA- 1 in thymic selection events, especially in TCR-mediated apoptosis. In in vitro experiments, anti-TSA-1 blocked anti-CD3-induced cell death of T cell hybridomas. When anti-TSA-1 was injected into newborn mice in vivo together with anti-CD3 epsilon or anti-TCR-beta, TCR/CD3-mediated apoptosis of thymocytes was almost completely blocked. The blockade of apoptosis was defined by the inhibition of, first, the decrease in total number of thymocytes; second, the decrease in percentages of CD4+ CD8+ thymocytes; and third, the induction of DNA fragmentation. However, anti-TSA-1 did not block either steroid- or radiation-induced apoptosis, indicating that a signal via TSA-1 does not inhibit a common pathway of thymocyte apoptosis. Since TCR-mediated apoptosis is pivotal in thymic ontogeny, these results suggest that TSA-1/Sca-2 is an important cell surface molecule regulating the fate of a developing T cell.

Full Text

The Full Text of this article is available as a PDF (703.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antica M., Wu L., Shortman K., Scollay R. Thymic stem cells in mouse bone marrow. Blood. 1994 Jul 1;84(1):111–117. [PubMed] [Google Scholar]
  2. Ashwell J. D., Cunningham R. E., Noguchi P. D., Hernandez D. Cell growth cycle block of T cell hybridomas upon activation with antigen. J Exp Med. 1987 Jan 1;165(1):173–194. doi: 10.1084/jem.165.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bamezai A., Palliser D., Berezovskaya A., McGrew J., Higgins K., Lacy E., Rock K. L. Regulated expression of Ly-6A.2 is important for T cell development. J Immunol. 1995 May 1;154(9):4233–4239. [PubMed] [Google Scholar]
  4. Bamezai A., Rock K. L. Overexpressed Ly-6A.2 mediates cell-cell adhesion by binding a ligand expressed on lymphoid cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4294–4298. doi: 10.1073/pnas.92.10.4294. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Classon B. J., Coverdale L. Mouse stem cell antigen Sca-2 is a member of the Ly-6 family of cell surface proteins. Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5296–5300. doi: 10.1073/pnas.91.12.5296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Codias E. K., Rutter J. E., Fleming T. J., Malek T. R. Down-regulation of IL-2 production by activation of T cells through Ly-6A/E. J Immunol. 1990 Sep 1;145(5):1407–1414. [PubMed] [Google Scholar]
  7. Cohen J. J., Duke R. C., Fadok V. A., Sellins K. S. Apoptosis and programmed cell death in immunity. Annu Rev Immunol. 1992;10:267–293. doi: 10.1146/annurev.iy.10.040192.001411. [DOI] [PubMed] [Google Scholar]
  8. Godfrey D. I., Masciantonio M., Tucek C. L., Malin M. A., Boyd R. L., Hugo P. Thymic shared antigen-1. A novel thymocyte marker discriminating immature from mature thymocyte subsets. J Immunol. 1992 Apr 1;148(7):2006–2011. [PubMed] [Google Scholar]
  9. Godfrey D. I., Zlotnik A. Control points in early T-cell development. Immunol Today. 1993 Nov;14(11):547–553. doi: 10.1016/0167-5699(93)90186-O. [DOI] [PubMed] [Google Scholar]
  10. Gunter K. C., Malek T. R., Shevach E. M. T cell-activating properties of an anti-Thy-1 monoclonal antibody. Possible analogy to OKT3/Leu-4. J Exp Med. 1984 Mar 1;159(3):716–730. doi: 10.1084/jem.159.3.716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haskins K., Kubo R., White J., Pigeon M., Kappler J., Marrack P. The major histocompatibility complex-restricted antigen receptor on T cells. I. Isolation with a monoclonal antibody. J Exp Med. 1983 Apr 1;157(4):1149–1169. doi: 10.1084/jem.157.4.1149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kosugi A., Saitoh S., Narumiya S., Miyake K., Hamaoka T. Activation-induced expression of thymic shared antigen-1 on T lymphocytes and its inhibitory role for TCR-mediated IL-2 production. Int Immunol. 1994 Dec;6(12):1967–1976. doi: 10.1093/intimm/6.12.1967. [DOI] [PubMed] [Google Scholar]
  13. Kubo R. T., Born W., Kappler J. W., Marrack P., Pigeon M. Characterization of a monoclonal antibody which detects all murine alpha beta T cell receptors. J Immunol. 1989 Apr 15;142(8):2736–2742. [PubMed] [Google Scholar]
  14. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. MacNeil I., Kennedy J., Godfrey D. I., Jenkins N. A., Masciantonio M., Mineo C., Gilbert D. J., Copeland N. G., Boyd R. L., Zlotnik A. Isolation of a cDNA encoding thymic shared antigen-1. A new member of the Ly6 family with a possible role in T cell development. J Immunol. 1993 Dec 15;151(12):6913–6923. [PubMed] [Google Scholar]
  16. Randle E. S., Waanders G. A., Masciantonio M., Godfrey D. I., Boyd R. L. A lymphostromal molecule, thymic shared Ag-1, regulates early thymocyte development in fetal thymus organ culture. J Immunol. 1993 Dec 1;151(11):6027–6035. [PubMed] [Google Scholar]
  17. Saitoh S., Kosugi A., Noda S., Yamamoto N., Ogata M., Minami Y., Miyake K., Hamaoka T. Modulation of TCR-mediated signaling pathway by thymic shared antigen-1 (TSA-1)/stem cell antigen-2 (Sca-2). J Immunol. 1995 Dec 15;155(12):5574–5581. [PubMed] [Google Scholar]
  18. Shi Y. F., Sahai B. M., Green D. R. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature. 1989 Jun 22;339(6226):625–626. doi: 10.1038/339625a0. [DOI] [PubMed] [Google Scholar]
  19. Spangrude G. J., Aihara Y., Weissman I. L., Klein J. The stem cell antigens Sca-1 and Sca-2 subdivide thymic and peripheral T lymphocytes into unique subsets. J Immunol. 1988 Dec 1;141(11):3697–3707. [PubMed] [Google Scholar]
  20. Wu L., Antica M., Johnson G. R., Scollay R., Shortman K. Developmental potential of the earliest precursor cells from the adult mouse thymus. J Exp Med. 1991 Dec 1;174(6):1617–1627. doi: 10.1084/jem.174.6.1617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. von Boehmer H. Thymic selection: a matter of life and death. Immunol Today. 1992 Nov;13(11):454–458. doi: 10.1016/0167-5699(92)90075-I. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES