Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Jun 1;183(6):2459–2469. doi: 10.1084/jem.183.6.2459

Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus

PMCID: PMC2192594  PMID: 8676066

Abstract

Nucleosome-specific T helper (Th) cells provide major histocompatibility complex class II-restricted, cognate help to nephritogenic antinuclear autoantibody-producing B cells in lupus. However, the lupus Th cells do not respond when components of the nucleosome, such as free DNA or histones, are individually presented by antigen-presenting cells. Thus critical peptide epitopes for the pathogenic Th cells are probably protected during uptake and processing of the native nucleosome particle as a whole. Therefore, herein we tested 145 overlapping peptides spanning all four core histones in the nucleosome. We localized three regions in core histones, one in H2B at amino acid position 10-33 (H2B(10-33)), and two in H4, at position 16- 39 (H4(16-39)) and position 71-94 (H4(71-94)), that contained the peptide epitopes recognized by the pathogenic autoantibody-inducing Th cells of lupus. The peptide autoepitopes also triggered the pathogenic Th cells of (SWR x NZB)F1 lupus mice in vivo to induce the development of severe lupus nephritis. The nucleosomal autoepitopes stimulated the production of Th1-type cytokines, consistent with immunoglobulin IgG2a, IgG2b, and IgG3 being the isotypes of nephritogenic autoantibodies induced in the lupus mice. Interestingly, the Th cell epitopes overlapped with regions in histones that contain B cell epitopes targeted by autoantibodies, as well as the sites where histones contact with DNA in the nucleosome. Identification of the disease-relevant autoepitopes in nucleosomes will help in understanding how the pathogenic Th cells of spontaneous systemic lupus erythematosus emerge, and potentially lead to the development of peptide-based tolerogenic therapy for this major autoimmune disease.

Full Text

The Full Text of this article is available as a PDF (933.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams S., Leblanc P., Datta S. K. Junctional region sequences of T-cell receptor beta-chain genes expressed by pathogenic anti-DNA autoantibody-inducing helper T cells from lupus mice: possible selection by cationic autoantigens. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11271–11275. doi: 10.1073/pnas.88.24.11271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ando D. G., Sercarz E. E., Hahn B. H. Mechanisms of T and B cell collaboration in the in vitro production of anti-DNA antibodies in the NZB/NZW F1 murine SLE model. J Immunol. 1987 May 15;138(10):3185–3190. [PubMed] [Google Scholar]
  3. Bavykin S. G., Usachenko S. I., Zalensky A. O., Mirzabekov A. D. Structure of nucleosomes and organization of internucleosomal DNA in chromatin. J Mol Biol. 1990 Apr 5;212(3):495–511. doi: 10.1016/0022-2836(90)90328-J. [DOI] [PubMed] [Google Scholar]
  4. Burlingame R. W., Rubin R. L., Balderas R. S., Theofilopoulos A. N. Genesis and evolution of antichromatin autoantibodies in murine lupus implicates T-dependent immunization with self antigen. J Clin Invest. 1993 Apr;91(4):1687–1696. doi: 10.1172/JCI116378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Casciola-Rosen L. A., Anhalt G., Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994 Apr 1;179(4):1317–1330. doi: 10.1084/jem.179.4.1317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chabre H., Amoura Z., Piette J. C., Godeau P., Bach J. F., Koutouzov S. Presence of nucleosome-restricted antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 1995 Oct;38(10):1485–1491. doi: 10.1002/art.1780381015. [DOI] [PubMed] [Google Scholar]
  7. Datta S. K., Patel H., Berry D. Induction of a cationic shift in IgG anti-DNA autoantibodies. Role of T helper cells with classical and novel phenotypes in three murine models of lupus nephritis. J Exp Med. 1987 May 1;165(5):1252–1268. doi: 10.1084/jem.165.5.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Desai-Mehta A., Lu L., Ramsey-Goldman R., Datta S. K. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest. 1996 May 1;97(9):2063–2073. doi: 10.1172/JCI118643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Desai-Mehta A., Mao C., Rajagopalan S., Robinson T., Datta S. K. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J Clin Invest. 1995 Feb;95(2):531–541. doi: 10.1172/JCI117695. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Desai D. D., Krishnan M. R., Swindle J. T., Marion T. N. Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J Immunol. 1993 Aug 1;151(3):1614–1626. [PubMed] [Google Scholar]
  11. Di Valerio R., Bernstein K. A., Varghese E., Lefkowith J. B. Murine lupus glomerulotropic monoclonal antibodies exhibit differing specificities but bind via a common mechanism. J Immunol. 1995 Aug 15;155(4):2258–2268. [PubMed] [Google Scholar]
  12. Dong X., Hamilton K. J., Satoh M., Wang J., Reeves W. H. Initiation of autoimmunity to the p53 tumor suppressor protein by complexes of p53 and SV40 large T antigen. J Exp Med. 1994 Apr 1;179(4):1243–1252. doi: 10.1084/jem.179.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gilkeson G. S., Pippen A. M., Pisetsky D. S. Induction of cross-reactive anti-dsDNA antibodies in preautoimmune NZB/NZW mice by immunization with bacterial DNA. J Clin Invest. 1995 Mar;95(3):1398–1402. doi: 10.1172/JCI117793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hagerty D. T., Allen P. M. Intramolecular mimicry. Identification and analysis of two cross-reactive T cell epitopes within a single protein. J Immunol. 1995 Sep 15;155(6):2993–3001. [PubMed] [Google Scholar]
  15. Hefeneider S. H., Cornell K. A., Brown L. E., Bakke A. C., McCoy S. L., Bennett R. M. Nucleosomes and DNA bind to specific cell-surface molecules on murine cells and induce cytokine production. Clin Immunol Immunopathol. 1992 Jun;63(3):245–251. doi: 10.1016/0090-1229(92)90229-h. [DOI] [PubMed] [Google Scholar]
  16. James J. A., Gross T., Scofield R. H., Harley J. B. Immunoglobulin epitope spreading and autoimmune disease after peptide immunization: Sm B/B'-derived PPPGMRPP and PPPGIRGP induce spliceosome autoimmunity. J Exp Med. 1995 Feb 1;181(2):453–461. doi: 10.1084/jem.181.2.453. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jorgensen J. L., Esser U., Fazekas de St Groth B., Reay P. A., Davis M. M. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature. 1992 Jan 16;355(6357):224–230. doi: 10.1038/355224a0. [DOI] [PubMed] [Google Scholar]
  18. Lanzavecchia A. How can cryptic epitopes trigger autoimmunity? J Exp Med. 1995 Jun 1;181(6):1945–1948. doi: 10.1084/jem.181.6.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992 Jul 9;358(6382):155–157. doi: 10.1038/358155a0. [DOI] [PubMed] [Google Scholar]
  20. Leighton J., Sette A., Sidney J., Appella E., Ehrhardt C., Fuchs S., Adorini L. Comparison of structural requirements for interaction of the same peptide with I-Ek and I-Ed molecules in the activation of MHC class II-restricted T cells. J Immunol. 1991 Jul 1;147(1):198–204. [PubMed] [Google Scholar]
  21. Lou Y., Tung K. S. T cell peptide of a self-protein elicits autoantibody to the protein antigen. Implications for specificity and pathogenetic role of antibody in autoimmunity. J Immunol. 1993 Nov 15;151(10):5790–5799. [PubMed] [Google Scholar]
  22. Mamula M. J., Fatenejad S., Craft J. B cells process and present lupus autoantigens that initiate autoimmune T cell responses. J Immunol. 1994 Feb 1;152(3):1453–1461. [PubMed] [Google Scholar]
  23. Mao C., Osman G. E., Adams S., Datta S. K. T cell receptor alpha-chain repertoire of pathogenic autoantibody-inducing T cells in lupus mice. J Immunol. 1994 Feb 1;152(3):1462–1470. [PubMed] [Google Scholar]
  24. Margalit H., Spouge J. L., Cornette J. L., Cease K. B., Delisi C., Berzofsky J. A. Prediction of immunodominant helper T cell antigenic sites from the primary sequence. J Immunol. 1987 Apr 1;138(7):2213–2229. [PubMed] [Google Scholar]
  25. Meziere C., Stöckl F., Batsford S., Vogt A., Muller S. Antibodies to DNA, chromatin core particles and histones in mice with graft-versus-host disease and their involvement in glomerular injury. Clin Exp Immunol. 1994 Nov;98(2):287–294. doi: 10.1111/j.1365-2249.1994.tb06139.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mohan C., Adams S., Stanik V., Datta S. K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. 1993 May 1;177(5):1367–1381. doi: 10.1084/jem.177.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mohan C., Shi Y., Laman J. D., Datta S. K. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol. 1995 Feb 1;154(3):1470–1480. [PubMed] [Google Scholar]
  28. Nanda N. K., Arzoo K. K., Geysen H. M., Sette A., Sercarz E. E. Recognition of multiple peptide cores by a single T cell receptor. J Exp Med. 1995 Aug 1;182(2):531–539. doi: 10.1084/jem.182.2.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Portanova J. P., Cheronis J. C., Blodgett J. K., Kotzin B. L. Histone autoantigens in murine lupus. Definition of a major epitope within an accessible region of chromatin. J Immunol. 1990 Jun 15;144(12):4633–4640. [PubMed] [Google Scholar]
  30. Rajagopalan S., Zordan T., Tsokos G. C., Datta S. K. Pathogenic anti-DNA autoantibody-inducing T helper cell lines from patients with active lupus nephritis: isolation of CD4-8- T helper cell lines that express the gamma delta T-cell antigen receptor. Proc Natl Acad Sci U S A. 1990 Sep;87(18):7020–7024. doi: 10.1073/pnas.87.18.7020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Rammensee H. G., Friede T., Stevanoviíc S. MHC ligands and peptide motifs: first listing. Immunogenetics. 1995;41(4):178–228. doi: 10.1007/BF00172063. [DOI] [PubMed] [Google Scholar]
  32. Rothbard J. B., Taylor W. R. A sequence pattern common to T cell epitopes. EMBO J. 1988 Jan;7(1):93–100. doi: 10.1002/j.1460-2075.1988.tb02787.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sainis K., Datta S. K. CD4+ T cell lines with selective patterns of autoreactivity as well as CD4- CD8- T helper cell lines augment the production of idiotypes shared by pathogenic anti-DNA autoantibodies in the NZB x SWR model of lupus nephritis. J Immunol. 1988 Apr 1;140(7):2215–2224. [PubMed] [Google Scholar]
  34. Sette A., Buus S., Colon S., Miles C., Grey H. M. I-Ad-binding peptides derived from unrelated protein antigens share a common structural motif. J Immunol. 1988 Jul 1;141(1):45–48. [PubMed] [Google Scholar]
  35. Singh R. R., Kumar V., Ebling F. M., Southwood S., Sette A., Sercarz E. E., Hahn B. H. T cell determinants from autoantibodies to DNA can upregulate autoimmunity in murine systemic lupus erythematosus. J Exp Med. 1995 Jun 1;181(6):2017–2027. doi: 10.1084/jem.181.6.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Snapper C. M., McIntyre T. M., Mandler R., Pecanha L. M., Finkelman F. D., Lees A., Mond J. J. Induction of IgG3 secretion by interferon gamma: a model for T cell-independent class switching in response to T cell-independent type 2 antigens. J Exp Med. 1992 May 1;175(5):1367–1371. doi: 10.1084/jem.175.5.1367. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES