Abstract
15 [correction of 1,5] deoxyspergualin (DSG) is a potent immunosuppressant whose mechanism of action is still somewhat of a mystery. We have studied the generation of lymphocytes in mice treated with this drug. The differentiation of T cells in the thymus was blocked at an important early control point: the CD4-8- --> CD4+8+ transition, known to depend on the expression of a preTCR complex that includes the variable TCR-beta, but not TCR-alpha, chain. In clear contrast, a later control point, the CD4+8+ --> CD4+8- or CD4-8+ transition, dependent on the display of a conventional alpha:beta TCR complex, appeared unaffected, as did activation of mature T cells both in vitro and in vivo. Interestingly, preB cell differentiation in the bone marrow was blocked at a precisely equivalent point: the A-C --> C' transition, controlled by expression of a pre-receptor complex containing the Ig heavy, but not light, chain. Mature B cells seemed unperturbed. These findings have theoretical implications, suggesting common signaling pathways in early lymphocytes that are distinct from those employed by more mature cells, and are also of practical interest, to be considered in the design of DSG treatment protocols.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alegre M. L., Sattar H. A., Herold K. C., Smith J., Tepper M. A., Bluestone J. A. Prevention of the humoral response induced by an anti-CD3 monoclonal antibody by deoxyspergualin in a murine model. Transplantation. 1994 Jun 27;57(12):1786–1794. [PubMed] [Google Scholar]
- Anderson S. J., Perlmutter R. M. A signaling pathway governing early thymocyte maturation. Immunol Today. 1995 Feb;16(2):99–105. doi: 10.1016/0167-5699(95)80096-4. [DOI] [PubMed] [Google Scholar]
- Andjelić S., Jain N., Nikolić-Zugić J. Ontogeny of fetal CD8lo4lo thymocytes: expression of CD44, CD25 and early expression of TcR alpha mRNA. Eur J Immunol. 1993 Sep;23(9):2109–2115. doi: 10.1002/eji.1830230910. [DOI] [PubMed] [Google Scholar]
- Bhatia S. K., Tygrett L. T., Grabstein K. H., Waldschmidt T. J. The effect of in vivo IL-7 deprivation on T cell maturation. J Exp Med. 1995 Apr 1;181(4):1399–1409. doi: 10.1084/jem.181.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boismenu R., Rhein M., Fischer W. H., Havran W. L. A role for CD81 in early T cell development. Science. 1996 Jan 12;271(5246):198–200. doi: 10.1126/science.271.5246.198. [DOI] [PubMed] [Google Scholar]
- Cardell S., Tangri S., Chan S., Kronenberg M., Benoist C., Mathis D. CD1-restricted CD4+ T cells in major histocompatibility complex class II-deficient mice. J Exp Med. 1995 Oct 1;182(4):993–1004. doi: 10.1084/jem.182.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chan S. H., Cosgrove D., Waltzinger C., Benoist C., Mathis D. Another view of the selective model of thymocyte selection. Cell. 1993 Apr 23;73(2):225–236. doi: 10.1016/0092-8674(93)90225-f. [DOI] [PubMed] [Google Scholar]
- Cosgrove D., Gray D., Dierich A., Kaufman J., Lemeur M., Benoist C., Mathis D. Mice lacking MHC class II molecules. Cell. 1991 Sep 6;66(5):1051–1066. doi: 10.1016/0092-8674(91)90448-8. [DOI] [PubMed] [Google Scholar]
- Fujii H., Takada T., Nemoto K., Abe F., Fujii A., Talmadge J. E., Takeuchi T. Deoxyspergualin, a novel immunosuppressant, markedly inhibits human mixed lymphocyte reaction and cytotoxic T-lymphocyte activity in vitro. Int J Immunopharmacol. 1992 May;14(4):731–737. doi: 10.1016/0192-0561(92)90136-9. [DOI] [PubMed] [Google Scholar]
- Gilfillan S., Waltzinger C., Benoist C., Mathis D. More efficient positive selection of thymocytes in mice lacking terminal deoxynucleotidyl transferase. Int Immunol. 1994 Nov;6(11):1681–1686. doi: 10.1093/intimm/6.11.1681. [DOI] [PubMed] [Google Scholar]
- Godfrey D. I., Kennedy J., Suda T., Zlotnik A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol. 1993 May 15;150(10):4244–4252. [PubMed] [Google Scholar]
- Groettrup M., Baron A., Griffiths G., Palacios R., von Boehmer H. T cell receptor (TCR) beta chain homodimers on the surface of immature but not mature alpha, gamma, delta chain deficient T cell lines. EMBO J. 1992 Jul;11(7):2735–2745. doi: 10.1002/j.1460-2075.1992.tb05339.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoeger P. H., Tepper M. A., Faith A., Higgins J. A., Lamb J. R., Geha R. S. Immunosuppressant deoxyspergualin inhibits antigen processing in monocytes. J Immunol. 1994 Nov 1;153(9):3908–3916. [PubMed] [Google Scholar]
- Huesmann M., Scott B., Kisielow P., von Boehmer H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell. 1991 Aug 9;66(3):533–540. doi: 10.1016/0092-8674(81)90016-7. [DOI] [PubMed] [Google Scholar]
- Ivanov V., Merkenschlager M., Ceredig R. Antioxidant treatment of thymic organ cultures decreases NF-kappa B and TCF1(alpha) transcription factor activities and inhibits alpha beta T cell development. J Immunol. 1993 Nov 1;151(9):4694–4704. [PubMed] [Google Scholar]
- Jacobs H., Vandeputte D., Tolkamp L., de Vries E., Borst J., Berns A. CD3 components at the surface of pro-T cells can mediate pre-T cell development in vivo. Eur J Immunol. 1994 Apr;24(4):934–939. doi: 10.1002/eji.1830240423. [DOI] [PubMed] [Google Scholar]
- Jameson S. C., Hogquist K. A., Bevan M. J. Positive selection of thymocytes. Annu Rev Immunol. 1995;13:93–126. doi: 10.1146/annurev.iy.13.040195.000521. [DOI] [PubMed] [Google Scholar]
- Jiang H., Takahara S., Takano Y., Machida M., Iwasaki A., Kokado Y., Kameoka H., Moutabarrik A., Ishibashi M., Sonoda T. In vitro immunosuppressive effect of deoxymethylspergualin. Transplant Proc. 1990 Aug;22(4):1633–1637. [PubMed] [Google Scholar]
- Kerr P. G., Atkins R. C. The effects of deoxyspergualin on lymphocytes and monocytes in vivo and in vitro. Transplantation. 1989 Dec;48(6):1048–1052. doi: 10.1097/00007890-198912000-00031. [DOI] [PubMed] [Google Scholar]
- Kishihara K., Penninger J., Wallace V. A., Kündig T. M., Kawai K., Wakeham A., Timms E., Pfeffer K., Ohashi P. S., Thomas M. L. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell. 1993 Jul 16;74(1):143–156. doi: 10.1016/0092-8674(93)90302-7. [DOI] [PubMed] [Google Scholar]
- Levelt C. N., Wang B., Ehrfeld A., Terhorst C., Eichmann K. Regulation of T cell receptor (TCR)-beta locus allelic exclusion and initiation of TCR-alpha locus rearrangement in immature thymocytes by signaling through the CD3 complex. Eur J Immunol. 1995 May;25(5):1257–1261. doi: 10.1002/eji.1830250519. [DOI] [PubMed] [Google Scholar]
- Lucas B., Vasseur F., Penit C. Normal sequence of phenotypic transitions in one cohort of 5-bromo-2'-deoxyuridine-pulse-labeled thymocytes. Correlation with T cell receptor expression. J Immunol. 1993 Nov 1;151(9):4574–4582. [PubMed] [Google Scholar]
- Löffert D., Schaal S., Ehlich A., Hardy R. R., Zou Y. R., Müller W., Rajewsky K. Early B-cell development in the mouse: insights from mutations introduced by gene targeting. Immunol Rev. 1994 Feb;137:135–153. doi: 10.1111/j.1600-065x.1994.tb00662.x. [DOI] [PubMed] [Google Scholar]
- Matsuyama T., Kimura T., Kitagawa M., Pfeffer K., Kawakami T., Watanabe N., Kündig T. M., Amakawa R., Kishihara K., Wakeham A. Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell. 1993 Oct 8;75(1):83–97. [PubMed] [Google Scholar]
- Merkenschlager M., Benoist C., Mathis D. Evidence for a single-niche model of positive selection. Proc Natl Acad Sci U S A. 1994 Nov 22;91(24):11694–11698. doi: 10.1073/pnas.91.24.11694. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morikawa K., Oseko F., Morikawa S. The suppressive effect of deoxyspergualin on the differentiation of human B lymphocytes maturing into immunoglobulin-producing cells. Transplantation. 1992 Sep;54(3):526–531. doi: 10.1097/00007890-199209000-00026. [DOI] [PubMed] [Google Scholar]
- Morse H. C., 3rd, Davidson W. F., Yetter R. A., Coffman R. L. A cell-surface antigen shared by B cells and Ly2+ peripheral T cells. Cell Immunol. 1982 Jul 1;70(2):311–320. doi: 10.1016/0008-8749(82)90332-x. [DOI] [PubMed] [Google Scholar]
- Negishi I., Motoyama N., Nakayama K., Nakayama K., Senju S., Hatakeyama S., Zhang Q., Chan A. C., Loh D. Y. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature. 1995 Aug 3;376(6539):435–438. doi: 10.1038/376435a0. [DOI] [PubMed] [Google Scholar]
- Nemoto K., Abe F., Nakamura T., Ishizuka M., Takeuchi T., Umezawa H. Blastogenic responses and the release of interleukins 1 and 2 by spleen cells obtained from rat skin allograft recipients administered with 15-deoxyspergualin. J Antibiot (Tokyo) 1987 Jul;40(7):1062–1064. doi: 10.7164/antibiotics.40.1062. [DOI] [PubMed] [Google Scholar]
- Peschon J. J., Morrissey P. J., Grabstein K. H., Ramsdell F. J., Maraskovsky E., Gliniak B. C., Park L. S., Ziegler S. F., Williams D. E., Ware C. B. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med. 1994 Nov 1;180(5):1955–1960. doi: 10.1084/jem.180.5.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodewald H. R., Kretzschmar K., Swat W., Takeda S. Intrathymically expressed c-kit ligand (stem cell factor) is a major factor driving expansion of very immature thymocytes in vivo. Immunity. 1995 Sep;3(3):313–319. doi: 10.1016/1074-7613(95)90116-7. [DOI] [PubMed] [Google Scholar]
- Rolink A., Karasuyama H., Haasner D., Grawunder U., Mårtensson I. L., Kudo A., Melchers F. Two pathways of B-lymphocyte development in mouse bone marrow and the roles of surrogate L chain in this development. Immunol Rev. 1994 Feb;137:185–201. doi: 10.1111/j.1600-065x.1994.tb00665.x. [DOI] [PubMed] [Google Scholar]
- Shinkai Y., Alt F. W. CD3 epsilon-mediated signals rescue the development of CD4+CD8+ thymocytes in RAG-2-/- mice in the absence of TCR beta chain expression. Int Immunol. 1994 Jul;6(7):995–1001. doi: 10.1093/intimm/6.7.995. [DOI] [PubMed] [Google Scholar]
- Shinkai Y., Ma A., Cheng H. L., Alt F. W. CD3 epsilon and CD3 zeta cytoplasmic domains can independently generate signals for T cell development and function. Immunity. 1995 Apr;2(4):401–411. doi: 10.1016/1074-7613(95)90148-5. [DOI] [PubMed] [Google Scholar]
- Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. doi: 10.1016/0092-8674(92)90029-c. [DOI] [PubMed] [Google Scholar]
- Springer T., Galfrè G., Secher D. S., Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol. 1978 Aug;8(8):539–551. doi: 10.1002/eji.1830080802. [DOI] [PubMed] [Google Scholar]
- Takahama Y., Suzuki H., Katz K. S., Grusby M. J., Singer A. Positive selection of CD4+ T cells by TCR ligation without aggregation even in the absence of MHC. Nature. 1994 Sep 1;371(6492):67–70. doi: 10.1038/371067a0. [DOI] [PubMed] [Google Scholar]
- Takano Y., Takahara S., Jiang H., Kokado Y., Kameoka H., Moutabarrik A., Ishibashi M., Okuyama A. Immunosuppressive mechanism of action of deoxymethylspergualin--a human in vitro assay. Transplant Proc. 1992 Aug;24(4):1372–1374. [PubMed] [Google Scholar]
- Takasu S., Sakagami K., Morisaki F., Kawamura T., Haisa M., Oiwa T., Inagaki M., Hasuoka H., Kurozumi Y., Orita K. Immunosuppressive mechanism of 15-deoxyspergualin on sinusoidal lining cells in swine liver transplantation: suppression of MHC class II antigens and interleukin-1 production. J Surg Res. 1991 Aug;51(2):165–169. doi: 10.1016/0022-4804(91)90089-5. [DOI] [PubMed] [Google Scholar]
- Tepper M. A., Nadler S. G., Esselstyn J. M., Sterbenz K. G. Deoxyspergualin inhibits kappa light chain expression in 70Z/3 pre-B cells by blocking lipopolysaccharide-induced NF-kappa B activation. J Immunol. 1995 Sep 1;155(5):2427–2436. [PubMed] [Google Scholar]
- Tepper M. A., Petty B., Bursuker I., Pasternak R. D., Cleaveland J., Spitalny G. L., Schacter B. Inhibition of antibody production by the immunosuppressive agent, 15-deoxyspergualin. Transplant Proc. 1991 Feb;23(1 Pt 1):328–331. [PubMed] [Google Scholar]
- Thomas F. T., Tepper M. A., Thomas J. M., Haisch C. E. 15-Deoxyspergualin: a novel immunosuppressive drug with clinical potential. Ann N Y Acad Sci. 1993 Jun 23;685:175–192. doi: 10.1111/j.1749-6632.1993.tb35863.x. [DOI] [PubMed] [Google Scholar]
- Tomonari K. A rat antibody against a structure functionally related to the mouse T-cell receptor/T3 complex. Immunogenetics. 1988;28(6):455–458. doi: 10.1007/BF00355379. [DOI] [PubMed] [Google Scholar]
- Trowbridge I. S., Lesley J., Schulte R., Hyman R., Trotter J. Biochemical characterization and cellular distribution of a polymorphic, murine cell-surface glycoprotein expressed on lymphoid tissues. Immunogenetics. 1982 Mar;15(3):299–312. doi: 10.1007/BF00364338. [DOI] [PubMed] [Google Scholar]
- Tufveson G., Gannedahl G., Johnsson C., Olausson M., Wanders A., Ekberg H. New immunosuppressants: testing and development in animal models and the clinic: with special reference to DSG. Immunol Rev. 1993 Dec;136:99–109. doi: 10.1111/j.1600-065x.1993.tb00656.x. [DOI] [PubMed] [Google Scholar]
- Waaga A. M., Ulrichs K., Krzymanski M., Treumer J., Hansmann M. L., Rommel T., Müller-Ruchholtz W. The immunosuppressive agent 15-deoxyspergualin induces tolerance and modulates MHC-antigen expression and interleukin-1 production in the early phase of rat allograft responses. Transplant Proc. 1990 Aug;22(4):1613–1614. [PubMed] [Google Scholar]
- van Oers N. S., von Boehmer H., Weiss A. The pre-T cell receptor (TCR) complex is functionally coupled to the TCR-zeta subunit. J Exp Med. 1995 Nov 1;182(5):1585–1590. doi: 10.1084/jem.182.5.1585. [DOI] [PMC free article] [PubMed] [Google Scholar]