Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Jun 1;183(6):2675–2680. doi: 10.1084/jem.183.6.2675

Protection against lethal toxic shock by targeted disruption of the CD28 gene

PMCID: PMC2192617  PMID: 8676089

Abstract

Toxic shock syndrome (TSS) is a multi system disorder resulting from superantigen-mediated cytokine production. Nearly 90% of the clinical cases of TSS arise due to an exotoxin, toxic shock syndrome toxin-1 (TSST-1), elaborated by toxigenic strains of Staphylococcus aureus. It is clearly established that besides antigen-specific signals a variety of costimulatory signals are required for full T cell activation. However, the nature and potential redundancy of costimulatory signals are incompletely understood, particularly with regards to superantigen- mediated T cell activation in vivo. Here we report that CD28-deficient mice (CD28-/-) are completely resistant to TSST-1-induced lethal TSS while CD28 (+/-) littermate mice were partially resistant to TSST-1. The mechanism for the resistance of the CD28 (-/-) mice was a complete abrogation of TNF-alpha accumulation in the serum and a nearly complete (90%) impairment of IFN-gamma secretion in response to TSST-1 injection. In contrast, the serum level of IL-2 was only moderately influenced by the variation of CD28 expression. CD28 (-/-) mice retained sensitivity to TNF-alpha as demonstrated by equivalent lethality after cytokine injection. These findings establish an essential requirement for CD28 costimulatory signals in TSST-1-induced TSS. The hierarchy of TSST-1 resistance among CD28 wild-type (CD28+/+), CD28 heterozygous (CD28+/-), and CD28-/- mice suggests a gene-dose effect, implying that the levels of T cell surface CD28 expression critically regulate superantigen-mediated costimulation. Finally, as these results demonstrate the primary and non-redundant role of CD28 receptors in the initiation of the in vivo cytokine cascade, they suggest therapeutic approaches for superantigen-mediated immunopathology.

Full Text

The Full Text of this article is available as a PDF (623.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beutler B., Cerami A. The biology of cachectin/TNF--a primary mediator of the host response. Annu Rev Immunol. 1989;7:625–655. doi: 10.1146/annurev.iy.07.040189.003205. [DOI] [PubMed] [Google Scholar]
  2. Boussiotis V. A., Gribben J. G., Freeman G. J., Nadler L. M. Blockade of the CD28 co-stimulatory pathway: a means to induce tolerance. Curr Opin Immunol. 1994 Oct;6(5):797–807. doi: 10.1016/0952-7915(94)90087-6. [DOI] [PubMed] [Google Scholar]
  3. Chatila T., Scholl P., Ramesh N., Trede N., Fuleihan R., Morio T., Geha R. S. Cellular and molecular mechanisms of immune activation by microbial superantigens: studies using toxic shock syndrome toxin-1. Chem Immunol. 1992;55:146–171. [PubMed] [Google Scholar]
  4. Choi Y., Lafferty J. A., Clements J. R., Todd J. K., Gelfand E. W., Kappler J., Marrack P., Kotzin B. L. Selective expansion of T cells expressing V beta 2 in toxic shock syndrome. J Exp Med. 1990 Sep 1;172(3):981–984. doi: 10.1084/jem.172.3.981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Damle N. K., Klussman K., Leytze G., Linsley P. S. Proliferation of human T lymphocytes induced with superantigens is not dependent on costimulation by the CD28 counter-receptor B7. J Immunol. 1993 Feb 1;150(3):726–735. [PubMed] [Google Scholar]
  6. Fraser J. D., Newton M. E., Weiss A. CD28 and T cell antigen receptor signal transduction coordinately regulate interleukin 2 gene expression in response to superantigen stimulation. J Exp Med. 1992 Apr 1;175(4):1131–1134. doi: 10.1084/jem.175.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gearing A. J., Beckett P., Christodoulou M., Churchill M., Clements J., Davidson A. H., Drummond A. H., Galloway W. A., Gilbert R., Gordon J. L. Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature. 1994 Aug 18;370(6490):555–557. doi: 10.1038/370555a0. [DOI] [PubMed] [Google Scholar]
  8. Goldbach-Mansky R., King P. D., Taylor A. P., Dupont B. A co-stimulatory role for CD28 in the activation of CD4+ T lymphocytes by staphylococcal enterotoxin B. Int Immunol. 1992 Dec;4(12):1351–1360. doi: 10.1093/intimm/4.12.1351. [DOI] [PubMed] [Google Scholar]
  9. Green J. M., Turka L. A., June C. H., Thompson C. B. CD28 and staphylococcal enterotoxins synergize to induce MHC-independent T-cell proliferation. Cell Immunol. 1992 Nov;145(1):11–20. doi: 10.1016/0008-8749(92)90308-c. [DOI] [PubMed] [Google Scholar]
  10. Harlan D. M., Abe R., Lee K. P., June C. H. Potential roles of the B7 and CD28 receptor families in autoimmunity and immune evasion. Clin Immunol Immunopathol. 1995 May;75(2):99–111. doi: 10.1006/clin.1995.1058. [DOI] [PubMed] [Google Scholar]
  11. Jongeneel C. V., Shakhov A. N., Nedospasov S. A., Cerottini J. C. Molecular control of tissue-specific expression at the mouse TNF locus. Eur J Immunol. 1989 Mar;19(3):549–552. doi: 10.1002/eji.1830190321. [DOI] [PubMed] [Google Scholar]
  12. June C. H., Bluestone J. A., Nadler L. M., Thompson C. B. The B7 and CD28 receptor families. Immunol Today. 1994 Jul;15(7):321–331. doi: 10.1016/0167-5699(94)90080-9. [DOI] [PubMed] [Google Scholar]
  13. Lindstein T., June C. H., Ledbetter J. A., Stella G., Thompson C. B. Regulation of lymphokine messenger RNA stability by a surface-mediated T cell activation pathway. Science. 1989 Apr 21;244(4902):339–343. doi: 10.1126/science.2540528. [DOI] [PubMed] [Google Scholar]
  14. Linsley P. S., Brady W., Urnes M., Grosmaire L. S., Damle N. K., Ledbetter J. A. CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med. 1991 Sep 1;174(3):561–569. doi: 10.1084/jem.174.3.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lucas P. J., Negishi I., Nakayama K., Fields L. E., Loh D. Y. Naive CD28-deficient T cells can initiate but not sustain an in vitro antigen-specific immune response. J Immunol. 1995 Jun 1;154(11):5757–5768. [PubMed] [Google Scholar]
  16. Marrack P., Kappler J. The staphylococcal enterotoxins and their relatives. Science. 1990 May 11;248(4956):705–711. doi: 10.1126/science.2185544. [DOI] [PubMed] [Google Scholar]
  17. Matis L. A., Glimcher L. H., Paul W. E., Schwartz R. H. Magnitude of response of histocompatibility-restricted T-cell clones is a function of the product of the concentrations of antigen and Ia molecules. Proc Natl Acad Sci U S A. 1983 Oct;80(19):6019–6023. doi: 10.1073/pnas.80.19.6019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miethke T., Duschek K., Wahl C., Heeg K., Wagner H. Pathogenesis of the toxic shock syndrome: T cell mediated lethal shock caused by the superantigen TSST-1. Eur J Immunol. 1993 Jul;23(7):1494–1500. doi: 10.1002/eji.1830230715. [DOI] [PubMed] [Google Scholar]
  19. Miethke T., Wahl C., Heeg K., Echtenacher B., Krammer P. H., Wagner H. T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J Exp Med. 1992 Jan 1;175(1):91–98. doi: 10.1084/jem.175.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mohler K. M., Sleath P. R., Fitzner J. N., Cerretti D. P., Alderson M., Kerwar S. S., Torrance D. S., Otten-Evans C., Greenstreet T., Weerawarna K. Protection against a lethal dose of endotoxin by an inhibitor of tumour necrosis factor processing. Nature. 1994 Jul 21;370(6486):218–220. doi: 10.1038/370218a0. [DOI] [PubMed] [Google Scholar]
  21. Muraille E., De Smedt T., Urbain J., Moser M., Leo O. B7.2 provides co-stimulatory functions in vivo in response to staphylococcal enterotoxin B. Eur J Immunol. 1995 Jul;25(7):2111–2114. doi: 10.1002/eji.1830250747. [DOI] [PubMed] [Google Scholar]
  22. Norton S. D., Schlievert P. M., Novick R. P., Jenkins M. K. Molecular requirements for T cell activation by the staphylococcal toxic shock syndrome toxin-1. J Immunol. 1990 Mar 15;144(6):2089–2095. [PubMed] [Google Scholar]
  23. Pfeffer K., Matsuyama T., Kündig T. M., Wakeham A., Kishihara K., Shahinian A., Wiegmann K., Ohashi P. S., Krönke M., Mak T. W. Mice deficient for the 55 kd tumor necrosis factor receptor are resistant to endotoxic shock, yet succumb to L. monocytogenes infection. Cell. 1993 May 7;73(3):457–467. doi: 10.1016/0092-8674(93)90134-c. [DOI] [PubMed] [Google Scholar]
  24. Pimentel-Muiños F. X., Muñoz-Fernández M. A., Fresno M. Control of T lymphocyte activation and IL-2 receptor expression by endogenously secreted lymphokines. J Immunol. 1994 Jun 15;152(12):5714–5722. [PubMed] [Google Scholar]
  25. Rott O., Tontsch U., Fleischer B. Dissociation of antigen-presenting capacity of astrocytes for peptide-antigens versus superantigens. J Immunol. 1993 Jan 1;150(1):87–95. [PubMed] [Google Scholar]
  26. Schwartz R. H. A cell culture model for T lymphocyte clonal anergy. Science. 1990 Jun 15;248(4961):1349–1356. doi: 10.1126/science.2113314. [DOI] [PubMed] [Google Scholar]
  27. Shahinian A., Pfeffer K., Lee K. P., Kündig T. M., Kishihara K., Wakeham A., Kawai K., Ohashi P. S., Thompson C. B., Mak T. W. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 1993 Jul 30;261(5121):609–612. doi: 10.1126/science.7688139. [DOI] [PubMed] [Google Scholar]
  28. Steeg P. S., Moore R. N., Johnson H. M., Oppenheim J. J. Regulation of murine macrophage Ia antigen expression by a lymphokine with immune interferon activity. J Exp Med. 1982 Dec 1;156(6):1780–1793. doi: 10.1084/jem.156.6.1780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Uchiyama T., Tadakuma T., Imanishi K., Araake M., Saito S., Yan X. J., Fujikawa H., Igarashi H., Yamaura N. Activation of murine T cells by toxic shock syndrome toxin-1. The toxin-binding structures expressed on murine accessory cells are MHC class II molecules. J Immunol. 1989 Nov 15;143(10):3175–3182. [PubMed] [Google Scholar]
  30. Walunas T. L., Lenschow D. J., Bakker C. Y., Linsley P. S., Freeman G. J., Green J. M., Thompson C. B., Bluestone J. A. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994 Aug;1(5):405–413. doi: 10.1016/1074-7613(94)90071-x. [DOI] [PubMed] [Google Scholar]
  31. Xu H., Gonzalo J. A., St Pierre Y., Williams I. R., Kupper T. S., Cotran R. S., Springer T. A., Gutierrez-Ramos J. C. Leukocytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med. 1994 Jul 1;180(1):95–109. doi: 10.1084/jem.180.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES