Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Jun 1;183(6):2699–2704. doi: 10.1084/jem.183.6.2699

The multidrug resistance phenotype confers immunological resistance

PMCID: PMC2192622  PMID: 8676093

Abstract

Multidrug resistance (MDR), which is due, in part, to the overexpression of P-glycoprotein, confers resistance to a variety of natural product chemotherapeutic agents such as daunorubicin, vincristine, and colchicine. RV+ cells are a P-glycoprotein overexpressing variant of the HL60 myeloid leukemia cell line. In addition to classic MDR, RV+ cells displayed relative resistance to complement-mediated cytotoxicity with both immunoglobulin G and M antibodies against different cell surface antigens, but not to antibody- dependent cellular cytotoxicity and lymphokine-activated killing. Complement resistance was reversed both by treatment with verapamil and with specific monoclonal antibodies (mAbs) capable of binding to P- glycoprotein and blocking its function. To further confirm that the resistance of RV+ cells was not a consequence of the selection of the cells on vincristine, a second system involving P-glycoprotein infectants was also investigated. K562 cells infected with the MDR1 gene, which were never selected on chemotherapeutic drugs, also displayed relative resistance to complement-mediated cytotoxicity. This MDR1 infection-induced resistance was also reversed by mAbs that bind to P-glycoprotein. Therefore, the MDR phenotype as mediated by P- glycoprotein provides resistance to complement-mediated cytotoxicity. The increased intracellular pH and the decreased membrane potential due to the MDR phenotype may result in abnormal membrane attack complex function. This observation may have implications for the possible mechanisms of action of P-glycoprotein and for a possible physiologic role for P-glycoprotein in protection against complement-mediated autolysis.

Full Text

The Full Text of this article is available as a PDF (595.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews N. W., Abrams C. K., Slatin S. L., Griffiths G. A T. cruzi-secreted protein immunologically related to the complement component C9: evidence for membrane pore-forming activity at low pH. Cell. 1990 Jun 29;61(7):1277–1287. doi: 10.1016/0092-8674(90)90692-8. [DOI] [PubMed] [Google Scholar]
  2. Caron P. C., Co M. S., Bull M. K., Avdalovic N. M., Queen C., Scheinberg D. A. Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res. 1992 Dec 15;52(24):6761–6767. [PubMed] [Google Scholar]
  3. Choi K., Frommel T. O., Stern R. K., Perez C. F., Kriegler M., Tsuruo T., Roninson I. B. Multidrug resistance after retroviral transfer of the human MDR1 gene correlates with P-glycoprotein density in the plasma membrane and is not affected by cytotoxic selection. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7386–7390. doi: 10.1073/pnas.88.16.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Gerlach J. H., Endicott J. A., Juranka P. F., Henderson G., Sarangi F., Deuchars K. L., Ling V. Homology between P-glycoprotein and a bacterial haemolysin transport protein suggests a model for multidrug resistance. Nature. 1986 Dec 4;324(6096):485–489. doi: 10.1038/324485a0. [DOI] [PubMed] [Google Scholar]
  5. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  6. Gottesman M. M., Pastan I. The multidrug transporter, a double-edged sword. J Biol Chem. 1988 Sep 5;263(25):12163–12166. [PubMed] [Google Scholar]
  7. Jackson M. B., Stephens C. L., Lecar H. Single channel currents induced by complement in antibody-coated cell membranes. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6421–6425. doi: 10.1073/pnas.78.10.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976 Nov 11;455(1):152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  9. Kägi D., Vignaux F., Ledermann B., Bürki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994 Jul 22;265(5171):528–530. doi: 10.1126/science.7518614. [DOI] [PubMed] [Google Scholar]
  10. Luz J. G., Wei L. Y., Basu S., Roepe P. D. Transfection of mu MDR 1 inhibits Na(+)-independent Cl-/-HCO3 exchange in Chinese hamster ovary cells. Biochemistry. 1994 Jun 14;33(23):7239–7249. doi: 10.1021/bi00189a028. [DOI] [PubMed] [Google Scholar]
  11. Marsh W., Sicheri D., Center M. S. Isolation and characterization of adriamycin-resistant HL-60 cells which are not defective in the initial intracellular accumulation of drug. Cancer Res. 1986 Aug;46(8):4053–4057. [PubMed] [Google Scholar]
  12. Mechetner E. B., Roninson I. B. Efficient inhibition of P-glycoprotein-mediated multidrug resistance with a monoclonal antibody. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5824–5828. doi: 10.1073/pnas.89.13.5824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mendelson J. Inaugural editorial . Clin Cancer Res. 1995 Jan;1(1):1–1. [PubMed] [Google Scholar]
  14. Meyers M. B., Rittmann-Grauer L., O'Brien J. P., Safa A. R. Characterization of monoclonal antibodies recognizing a Mr 180,000 P-glycoprotein: differential expression of the Mr 180,000 and Mr 170,000 P-glycoproteins in multidrug-resistant human tumor cells. Cancer Res. 1989 Jun 15;49(12):3209–3214. [PubMed] [Google Scholar]
  15. Peterson R. H., Meyers M. B., Spengler B. A., Biedler J. L. Alteration of plasma membrane glycopeptides and gangliosides of Chinese hamster cells accompanying development of resistance to daunorubicin and vincristine. Cancer Res. 1983 Jan;43(1):222–228. [PubMed] [Google Scholar]
  16. Roepe P. D. The role of the MDR protein in altered drug translocation across tumor cell membranes. Biochim Biophys Acta. 1995 Dec 20;1241(3):385–405. doi: 10.1016/0304-4157(95)00013-5. [DOI] [PubMed] [Google Scholar]
  17. Roepe P. D., Wei L. Y., Cruz J., Carlson D. Lower electrical membrane potential and altered pHi homeostasis in multidrug-resistant (MDR) cells: further characterization of a series of MDR cell lines expressing different levels of P-glycoprotein. Biochemistry. 1993 Oct 19;32(41):11042–11056. doi: 10.1021/bi00092a014. [DOI] [PubMed] [Google Scholar]
  18. Scheinberg D. A., Tanimoto M., McKenzie S., Strife A., Old L. J., Clarkson B. D. Monoclonal antibody M195: a diagnostic marker for acute myelogenous leukemia. Leukemia. 1989 Jun;3(6):440–445. [PubMed] [Google Scholar]
  19. Slater L. M., Murray S. L., Wetzel M. W., Wisdom R. M., DuVall E. M. Verapamil restoration of daunorubicin responsiveness in daunorubicin-resistant Ehrlich ascites carcinoma. J Clin Invest. 1982 Nov;70(5):1131–1134. doi: 10.1172/JCI110702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Tsuruo T., Hamada H., Sato S., Heike Y. Inhibition of multidrug-resistant human tumor growth in athymic mice by anti-P-glycoprotein monoclonal antibodies. Jpn J Cancer Res. 1989 Jul;80(7):627–631. doi: 10.1111/j.1349-7006.1989.tb01688.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ueda K., Cardarelli C., Gottesman M. M., Pastan I. Expression of a full-length cDNA for the human "MDR1" gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A. 1987 May;84(9):3004–3008. doi: 10.1073/pnas.84.9.3004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. te Boekhorst P. A., de Leeuw K., Schoester M., Wittebol S., Nooter K., Hagemeijer A., Löwenberg B., Sonneveld P. Predominance of functional multidrug resistance (MDR-1) phenotype in CD34+ acute myeloid leukemia cells. Blood. 1993 Nov 15;82(10):3157–3162. [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES