Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):377–386. doi: 10.1084/jem.184.2.377

Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans

PMCID: PMC2192698  PMID: 8760791

Abstract

To assess the relationship between melanin production by Cryptococcus neoformans and virulence on a molecular basis, we asked: (a) is CNLAC1, the laccase structural gene of C. neoformans, expressed in vivo?; (b) can mouse virulence be restored to cnlac1 (Mel-) mutants by complementation with CNLAC1?; and (c) will targeted gene deletion of CNLAC1 decrease virulence for mice? Melanin is produced when cryptococcal laccase catalyzes the oxidation of certain aromatic compounds, including L-dopa, to quinones, which then polymerize to melanin. To assess CNLAC1 transcription, RNA was extracted from C. neoformans in cerebrospinal fluid of infected rabbits. Reverse transcriptase-polymerase chain reaction detected CNLAC1 transcript, indicating that laccase may be produced in the infected host. To assess the effect of CNLAC1 deletion on virulence, a Mel- mutant (10S) was obtained by disruption of the 5' end of the gene. After multiple backcrosses with a parental strain to remove unintended genetic defects introduced by the transformation process, a Mel- progeny was tested and found to be much less virulent for mice than a Mel+ progeny. Another Mel- strain (mel2), obtained from J.C. Edman (University of California at San Francisco, CA), produced CNLAC1 transcript but no detectable melanin. Characterization of this mutant revealed a base substitution in CNLAC1 that changed a histidine to tyrosine in a putative copper- binding site. When this base change was introduced into CNLAC1 by site- directed mutagenesis, it no longer transformed mel2 to Mel+, indicating the importance of this histidine in laccase activity. Complementation of a mel2-derived mutant with CNLAC1 restored the Mel+ phenotype and increased virulence. These results support the concept that the CNLAC1 gene product has a role in virulence.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Edman J. C., Kwon-Chung K. J. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol. 1990 Sep;10(9):4538–4544. doi: 10.1128/mcb.10.9.4538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Jacobson E. S., Emery H. S. Temperature regulation of the cryptococcal phenoloxidase. J Med Vet Mycol. 1991;29(2):121–124. doi: 10.1080/02681219180000201. [DOI] [PubMed] [Google Scholar]
  3. Kwon-Chung K. J., Edman J. C., Wickes B. L. Genetic association of mating types and virulence in Cryptococcus neoformans. Infect Immun. 1992 Feb;60(2):602–605. doi: 10.1128/iai.60.2.602-605.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kwon-Chung K. J., Hill W. B., Bennett J. E. New, special stain for histopathological diagnosis of cryptococcosis. J Clin Microbiol. 1981 Feb;13(2):383–387. doi: 10.1128/jcm.13.2.383-387.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kwon-Chung K. J., Polacheck I., Popkin T. J. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol. 1982 Jun;150(3):1414–1421. doi: 10.1128/jb.150.3.1414-1421.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kwon-Chung K. J., Rhodes J. C. Encapsulation and melanin formation as indicators of virulence in Cryptococcus neoformans. Infect Immun. 1986 Jan;51(1):218–223. doi: 10.1128/iai.51.1.218-223.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Perfect J. R., Lang S. D., Durack D. T. Chronic cryptococcal meningitis: a new experimental model in rabbits. Am J Pathol. 1980 Oct;101(1):177–194. [PMC free article] [PubMed] [Google Scholar]
  8. Polacheck I., Hearing V. J., Kwon-Chung K. J. Biochemical studies of phenoloxidase and utilization of catecholamines in Cryptococcus neoformans. J Bacteriol. 1982 Jun;150(3):1212–1220. doi: 10.1128/jb.150.3.1212-1220.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rhodes J. C., Polacheck I., Kwon-Chung K. J. Phenoloxidase activity and virulence in isogenic strains of Cryptococcus neoformans. Infect Immun. 1982 Jun;36(3):1175–1184. doi: 10.1128/iai.36.3.1175-1184.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rothstein R. J. One-step gene disruption in yeast. Methods Enzymol. 1983;101:202–211. doi: 10.1016/0076-6879(83)01015-0. [DOI] [PubMed] [Google Scholar]
  11. Torres-Guererro H., Edman J. C. Melanin-deficient mutants of Cryptococcus neoformans. J Med Vet Mycol. 1994;32(4):303–313. [PubMed] [Google Scholar]
  12. Varma A., Kwon-Chung K. J. DNA probe for strain typing of Cryptococcus neoformans. J Clin Microbiol. 1992 Nov;30(11):2960–2967. doi: 10.1128/jcm.30.11.2960-2967.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Varma A., Kwon-Chung K. J. Rapid method to extract DNA from Cryptococcus neoformans. J Clin Microbiol. 1991 Apr;29(4):810–812. doi: 10.1128/jcm.29.4.810-812.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wang Y., Aisen P., Casadevall A. Cryptococcus neoformans melanin and virulence: mechanism of action. Infect Immun. 1995 Aug;63(8):3131–3136. doi: 10.1128/iai.63.8.3131-3136.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang Y., Casadevall A. Susceptibility of melanized and nonmelanized Cryptococcus neoformans to nitrogen- and oxygen-derived oxidants. Infect Immun. 1994 Jul;62(7):3004–3007. doi: 10.1128/iai.62.7.3004-3007.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Wheeler M. H., Bell A. A. Melanins and their importance in pathogenic fungi. Curr Top Med Mycol. 1988;2:338–387. doi: 10.1007/978-1-4612-3730-3_10. [DOI] [PubMed] [Google Scholar]
  17. Wickes B. L., Moore T. D., Kwon-Chung K. J. Comparison of the electrophoretic karyotypes and chromosomal location of ten genes in the two varieties of Cryptococcus neoformans. Microbiology. 1994 Mar;140(Pt 3):543–550. doi: 10.1099/00221287-140-3-543. [DOI] [PubMed] [Google Scholar]
  18. Williamson P. R. Biochemical and molecular characterization of the diphenol oxidase of Cryptococcus neoformans: identification as a laccase. J Bacteriol. 1994 Feb;176(3):656–664. doi: 10.1128/jb.176.3.656-664.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhao L. J., Zhang Q. X., Padmanabhan R. Polymerase chain reaction-based point mutagenesis protocol. Methods Enzymol. 1993;217:218–227. doi: 10.1016/0076-6879(93)17064-c. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES