Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):759–764. doi: 10.1084/jem.184.2.759

Identification of CD8 as a peanut agglutinin (PNA) receptor molecule on immature thymocytes

PMCID: PMC2192699  PMID: 8760831

Abstract

Differentiation of most T lymphocytes occurs within the thymus and is characterized by variable expression of CD4/CD8 coreceptor molecules, increased surface density of T cell antigen receptor (TCR) alpha beta proteins, and decreased expression of glycan chains recognized by the galactose-specific lectin peanut agglutinin (PNA). Although appreciated for several decades that PNA agglutination is useful for the physical separation of immature and mature thymocyte sub-populations, the identity of specific PNA-binding glycoproteins expressed on immature thymocytes remains to be determined. In the current report, we studied the expression of PNA-specific glycans on immature and mature T cells and used lectin affinity chromatography and immunoprecipitation techniques to characterize PNA-binding glycoproteins on thymocytes. Our data demonstrate that PNA-specific glycans are localized on a relatively small subset of thymocyte surface proteins, several of which were specifically identified, including CD43, CD45, and suprisingly, CD8 molecules. CD8 alpha and CD8 alpha' proteins bound to PNA in the absence of CD8 beta expression showing that O-glycans on CD8 beta glycoproteins are not necessary for PNA binding and that glycosylation of CD8 alpha and CD8 alpha' proteins proceeds effectively in the absence of CD8 beta. Finally, we demonstrate that PNA binding of CD8 is developmentally regulated by sialic acid addition as CD8 proteins from mature T cells bound to PNA only after sialidase treatment. These studies identify CD8 as a PNA receptor molecule on immature thymocytes and show that PNA binding of CD8 on immature and mature T cells is developmentally regulated by sialic acid modification.

Full Text

The Full Text of this article is available as a PDF (794.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baum L. G., Pang M., Perillo N. L., Wu T., Delegeane A., Uittenbogaart C. H., Fukuda M., Seilhamer J. J. Human thymic epithelial cells express an endogenous lectin, galectin-1, which binds to core 2 O-glycans on thymocytes and T lymphoblastoid cells. J Exp Med. 1995 Mar 1;181(3):877–887. doi: 10.1084/jem.181.3.877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brown W. R., Williams A. F. Lymphocyte cell surface glycoproteins which bind to soybean and peanut lectins. Immunology. 1982 Aug;46(4):713–726. [PMC free article] [PubMed] [Google Scholar]
  3. Casabó L. G., Mamalaki C., Kioussis D., Zamoyska R. T cell activation results in physical modification of the mouse CD8 beta chain. J Immunol. 1994 Jan 15;152(2):397–404. [PubMed] [Google Scholar]
  4. De Maio A., Lis H., Gershoni J. M., Sharon N. Identification of glycoproteins that are receptors for peanut agglutinin on immature (cortical) mouse thymocytes. FEBS Lett. 1986 Jan 1;194(1):28–32. doi: 10.1016/0014-5793(86)80045-x. [DOI] [PubMed] [Google Scholar]
  5. De Maio A., Lis H., Gershoni J. M., Sharon N. Identification of peanut agglutinin-binding glycoproteins on immature human thymocytes. Cell Immunol. 1986 May;99(2):345–353. doi: 10.1016/0008-8749(86)90243-1. [DOI] [PubMed] [Google Scholar]
  6. De Petris S., Takacs B. Relationship between mouse lymphocyte receptors for peanut agglutinin (PNA) and Helix pomatia agglutinin (HPA). Eur J Immunol. 1983 Oct;13(10):831–840. doi: 10.1002/eji.1830131010. [DOI] [PubMed] [Google Scholar]
  7. Favero J., Bonnafous J. C., Dornand J., Mani J. C. Characterization of peanut agglutinin receptors of murine thymocytes. Cell Immunol. 1984 Jul;86(2):439–447. doi: 10.1016/0008-8749(84)90399-x. [DOI] [PubMed] [Google Scholar]
  8. Fowlkes B. J., Pardoll D. M. Molecular and cellular events of T cell development. Adv Immunol. 1989;44:207–264. doi: 10.1016/s0065-2776(08)60643-4. [DOI] [PubMed] [Google Scholar]
  9. Fowlkes B. J., Waxdal M. J., Sharrow S. O., Thomas C. A., 3rd, Asofsky R., Mathieson B. J. Differential binding of fluorescein-labeled lectins to mouse thymocytes: subsets revealed by flow microfluorometry. J Immunol. 1980 Aug;125(2):623–630. [PubMed] [Google Scholar]
  10. Fung-Leung W. P., Kündig T. M., Ngo K., Panakos J., De Sousa-Hitzler J., Wang E., Ohashi P. S., Mak T. W., Lau C. Y. Reduced thymic maturation but normal effector function of CD8+ T cells in CD8 beta gene-targeted mice. J Exp Med. 1994 Sep 1;180(3):959–967. doi: 10.1084/jem.180.3.959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  12. Gillespie W., Paulson J. C., Kelm S., Pang M., Baum L. G. Regulation of alpha 2,3-sialyltransferase expression correlates with conversion of peanut agglutinin (PNA)+ to PNA- phenotype in developing thymocytes. J Biol Chem. 1993 Feb 25;268(6):3801–3804. [PubMed] [Google Scholar]
  13. Gulley M. L., Ogata L. C., Thorson J. A., Dailey M. O., Kemp J. D. Identification of a murine pan-T cell antigen which is also expressed during the terminal phases of B cell differentiation. J Immunol. 1988 Jun 1;140(11):3751–3757. [PubMed] [Google Scholar]
  14. Kearse K. P., Singer A. Isolation of immature and mature T cell receptor complexes by lectin affinity chromatography. J Immunol Methods. 1994 Jan 3;167(1-2):75–81. doi: 10.1016/0022-1759(94)90076-0. [DOI] [PubMed] [Google Scholar]
  15. Kearse K. P., Takahama Y., Punt J. A., Sharrow S. O., Singer A. Early molecular events induced by T cell receptor (TCR) signaling in immature CD4+ CD8+ thymocytes: increased synthesis of TCR-alpha protein is an early response to TCR signaling that compensates for TCR-alpha instability, improves TCR assembly, and parallels other indicators of positive selection. J Exp Med. 1995 Jan 1;181(1):193–202. doi: 10.1084/jem.181.1.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kijimoto-Ochiai S., Uede T. CD23 molecule acts as a galactose-binding lectin in the cell aggregation of EBV-transformed human B-cell lines. Glycobiology. 1995 Jun;5(4):443–448. doi: 10.1093/glycob/5.4.443. [DOI] [PubMed] [Google Scholar]
  17. Levi G., Teichberg V. I. Isolation and characterization of chicken thymic electrolectin. Biochem J. 1985 Mar 1;226(2):379–384. doi: 10.1042/bj2260379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manjunath N., Correa M., Ardman M., Ardman B. Negative regulation of T-cell adhesion and activation by CD43. Nature. 1995 Oct 12;377(6549):535–538. doi: 10.1038/377535a0. [DOI] [PubMed] [Google Scholar]
  19. Reisner Y., Linker-Israeli M., Sharon N. Separation of mouse thymocytes into two subpopulations by the use of peanut agglutinin. Cell Immunol. 1976 Jul;25(1):129–134. doi: 10.1016/0008-8749(76)90103-9. [DOI] [PubMed] [Google Scholar]
  20. Sgroi D., Koretzky G. A., Stamenkovic I. Regulation of CD45 engagement by the B-cell receptor CD22. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4026–4030. doi: 10.1073/pnas.92.9.4026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sgroi D., Varki A., Braesch-Andersen S., Stamenkovic I. CD22, a B cell-specific immunoglobulin superfamily member, is a sialic acid-binding lectin. J Biol Chem. 1993 Apr 5;268(10):7011–7018. [PubMed] [Google Scholar]
  22. Sharon N. Lectin receptors as lymphocyte surface markers. Adv Immunol. 1983;34:213–298. doi: 10.1016/s0065-2776(08)60380-6. [DOI] [PubMed] [Google Scholar]
  23. Sperling A. I., Green J. M., Mosley R. L., Smith P. L., DiPaolo R. J., Klein J. R., Bluestone J. A., Thompson C. B. CD43 is a murine T cell costimulatory receptor that functions independently of CD28. J Exp Med. 1995 Jul 1;182(1):139–146. doi: 10.1084/jem.182.1.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Springer T., Galfrè G., Secher D. S., Milstein C. Monoclonal xenogeneic antibodies to murine cell surface antigens: identification of novel leukocyte differentiation antigens. Eur J Immunol. 1978 Aug;8(8):539–551. doi: 10.1002/eji.1830080802. [DOI] [PubMed] [Google Scholar]
  25. Swamy M. J., Gupta D., Mahanta S. K., Surolia A. Further characterization of the saccharide specificity of peanut (Arachis hypogaea) agglutinin. Carbohydr Res. 1991 Jun 25;213:59–67. doi: 10.1016/s0008-6215(00)90598-6. [DOI] [PubMed] [Google Scholar]
  26. Williams A. F., Parekh R. B., Wing D. R., Willis A. C., Barclay A. N., Dalchau R., Fabre J. W., Dwek R. A., Rademacher T. W. Comparative analysis of the N-glycans of rat, mouse and human Thy-1. Site-specific oligosaccharide patterns of neural Thy-1, a member of the immunoglobulin superfamily. Glycobiology. 1993 Aug;3(4):339–348. doi: 10.1093/glycob/3.4.339. [DOI] [PubMed] [Google Scholar]
  27. Zamoyska R. The CD8 coreceptor revisited: one chain good, two chains better. Immunity. 1994 Jul;1(4):243–246. doi: 10.1016/1074-7613(94)90075-2. [DOI] [PubMed] [Google Scholar]
  28. von Boehmer H. Positive selection of lymphocytes. Cell. 1994 Jan 28;76(2):219–228. doi: 10.1016/0092-8674(94)90330-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES