Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):387–396. doi: 10.1084/jem.184.2.387

Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation

PMCID: PMC2192701  PMID: 8760792

Abstract

Neonatal thymectomy (NTx), especially around day 3 after birth, causes various organ-specific autoimmune diseases in mice. This report shows that: (a) T cells expressing the interleukin 2 receptor alpha chains (CD25) ontogenically begin to appear in the normal periphery immediately after day 3, rapidly increasing within 2 wk to nearly adult levels (approximately 10% of CD3+ cells, especially of CD4+ cells); (b) NTx on day 3 eliminates CD25+ T cells from the periphery for several days; inoculation immediately after NTx of CD25+ splenic T cells from syngeneic non-Tx adult mice prevents autoimmune development, whereas inoculation of CD25- T cells even at a larger dose does not; and furthermore, (c) similar autoimmune diseases can be produced in adult athymic nu/nu mice by inoculating either spleen cell suspensions from 3- d-old euthymic nu/+ mice or CD25+ cell-depleted spleen cell suspensions from older, even 1-yr-old, nu/+ mice. The CD25- populations from neonates or adults are also similar in the profile of cytokine formation. These results, taken together, indicate that one aspect of peripheral self-tolerance is maintained by CD25+ T cells that sustain potentially pathogenic self-reactive T cells in a CD25- dormant state; the thymic production of the former is developmentally programmed to begin on day 3 after birth in mice. Thus, NTx on day 3 can, at least transiently, eliminate/reduce the autoimmune-preventive CD25+ T cells, thereby leading to activation of the self-reactive T cells that have been produced before NTx.

Full Text

The Full Text of this article is available as a PDF (977.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akashi T., Eishi Y. Developmental expression of autoimmune target antigens during organogenesis. Immunology. 1991 Nov;74(3):524–532. [PMC free article] [PubMed] [Google Scholar]
  2. Alderuccio F., Toh B. H., Tan S. S., Gleeson P. A., van Driel I. R. An autoimmune disease with multiple molecular targets abrogated by the transgenic expression of a single autoantigen in the thymus. J Exp Med. 1993 Aug 1;178(2):419–426. doi: 10.1084/jem.178.2.419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boitard C., Yasunami R., Dardenne M., Bach J. F. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J Exp Med. 1989 May 1;169(5):1669–1680. doi: 10.1084/jem.169.5.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bonomo A., Kehn P. J., Shevach E. M. Post-thymectomy autoimmunity: abnormal T-cell homeostasis. Immunol Today. 1995 Feb;16(2):61–67. doi: 10.1016/0167-5699(95)80089-1. [DOI] [PubMed] [Google Scholar]
  5. Bonomo A., Kehn P. J., Shevach E. M. Premature escape of double-positive thymocytes to the periphery of young mice. Possible role in autoimmunity. J Immunol. 1994 Feb 15;152(4):1509–1514. [PubMed] [Google Scholar]
  6. Bottomly K., Luqman M., Greenbaum L., Carding S., West J., Pasqualini T., Murphy D. B. A monoclonal antibody to murine CD45R distinguishes CD4 T cell populations that produce different cytokines. Eur J Immunol. 1989 Apr;19(4):617–623. doi: 10.1002/eji.1830190407. [DOI] [PubMed] [Google Scholar]
  7. Bruce J., Symington F. W., McKearn T. J., Sprent J. A monoclonal antibody discriminating between subsets of T and B cells. J Immunol. 1981 Dec;127(6):2496–2501. [PubMed] [Google Scholar]
  8. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  9. Dialynas D. P., Quan Z. S., Wall K. A., Pierres A., Quintáns J., Loken M. R., Pierres M., Fitch F. W. Characterization of the murine T cell surface molecule, designated L3T4, identified by monoclonal antibody GK1.5: similarity of L3T4 to the human Leu-3/T4 molecule. J Immunol. 1983 Nov;131(5):2445–2451. [PubMed] [Google Scholar]
  10. Fowell D., McKnight A. J., Powrie F., Dyke R., Mason D. Subsets of CD4+ T cells and their roles in the induction and prevention of autoimmunity. Immunol Rev. 1991 Oct;123:37–64. doi: 10.1111/j.1600-065x.1991.tb00605.x. [DOI] [PubMed] [Google Scholar]
  11. Jones L. A., Chin L. T., Merriam G. R., Nelson L. M., Kruisbeck A. M. Failure of clonal deletion in neonatally thymectomized mice: tolerance is preserved through clonal anergy. J Exp Med. 1990 Nov 1;172(5):1277–1285. doi: 10.1084/jem.172.5.1277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kincade P. W., Phillips R. A. B lymphocyte development. Fed Proc. 1985 Oct;44(13):2874–2881. [PubMed] [Google Scholar]
  13. Kojima A., Prehn R. T. Genetic susceptibility to post-thymectomy autoimmune diseases in mice. Immunogenetics. 1981;14(1-2):15–27. doi: 10.1007/BF00344296. [DOI] [PubMed] [Google Scholar]
  14. Kojima A., Taguchi O., Nishizuka Y. Experimental production of possible autoimmune castritis followed by macrocytic anemia in athymic nude mice. Lab Invest. 1980 Apr;42(4):387–395. [PubMed] [Google Scholar]
  15. Kojima A., Tanaka-Kojima Y., Sakakura T., Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest. 1976 Jun;34(6):550–557. [PubMed] [Google Scholar]
  16. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  17. Leo O., Foo M., Sachs D. H., Samelson L. E., Bluestone J. A. Identification of a monoclonal antibody specific for a murine T3 polypeptide. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1374–1378. doi: 10.1073/pnas.84.5.1374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lowenthal J. W., Corthésy P., Tougne C., Lees R., MacDonald H. R., Nabholz M. High and low affinity IL 2 receptors: analysis by IL 2 dissociation rate and reactivity with monoclonal anti-receptor antibody PC61. J Immunol. 1985 Dec;135(6):3988–3994. [PubMed] [Google Scholar]
  19. Mordes J. P., Gallina D. L., Handler E. S., Greiner D. L., Nakamura N., Pelletier A., Rossini A. A. Transfusions enriched for W3/25+ helper/inducer T lymphocytes prevent spontaneous diabetes in the BB/W rat. Diabetologia. 1987 Jan;30(1):22–26. doi: 10.1007/BF01788902. [DOI] [PubMed] [Google Scholar]
  20. Murakami K., Maruyama H., Nishio A., Kuribayashi K., Inaba M., Inaba K., Hosono M., Shinagawa K., Sakai M., Masuda T. Effects of intrathymic injection of organ-specific autoantigens, parietal cells, at the neonatal stage on autoreactive effector and suppressor T cell precursors. Eur J Immunol. 1993 Apr;23(4):809–814. doi: 10.1002/eji.1830230406. [DOI] [PubMed] [Google Scholar]
  21. Murakami K., Muruyama H., Hosono M., Sinagawa K., Yamada J., Kuribayashi K., Masuda T. Germ-free condition and the susceptibility of BALB/c mice to post-thymectomy autoimmune gastritis. Autoimmunity. 1992;12(1):69–70. doi: 10.3109/08916939209146132. [DOI] [PubMed] [Google Scholar]
  22. Nakayama E., Dippold W., Shiku H., Oettgen H. F., Old L. J. Alloantigen-induced T-cell proliferation: Lyt phenotype of responding cells and blocking of proliferation by Lyt antisera. Proc Natl Acad Sci U S A. 1980 May;77(5):2890–2894. doi: 10.1073/pnas.77.5.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ortega G., Robb R. J., Shevach E. M., Malek T. R. The murine IL 2 receptor. I. Monoclonal antibodies that define distinct functional epitopes on activated T cells and react with activated B cells. J Immunol. 1984 Oct;133(4):1970–1975. [PubMed] [Google Scholar]
  24. Pircher H., Rohrer U. H., Moskophidis D., Zinkernagel R. M., Hengartner H. Lower receptor avidity required for thymic clonal deletion than for effector T-cell function. Nature. 1991 Jun 6;351(6326):482–485. doi: 10.1038/351482a0. [DOI] [PubMed] [Google Scholar]
  25. Powrie F., Mason D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med. 1990 Dec 1;172(6):1701–1708. doi: 10.1084/jem.172.6.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rolink A., Grawunder U., Winkler T. H., Karasuyama H., Melchers F. IL-2 receptor alpha chain (CD25, TAC) expression defines a crucial stage in pre-B cell development. Int Immunol. 1994 Aug;6(8):1257–1264. doi: 10.1093/intimm/6.8.1257. [DOI] [PubMed] [Google Scholar]
  27. Sakaguchi S., Ermak T. H., Toda M., Berg L. J., Ho W., Fazekas de St Groth B., Peterson P. A., Sakaguchi N., Davis M. M. Induction of autoimmune disease in mice by germline alteration of the T cell receptor gene expression. J Immunol. 1994 Feb 1;152(3):1471–1484. [PubMed] [Google Scholar]
  28. Sakaguchi S., Fukuma K., Kuribayashi K., Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med. 1985 Jan 1;161(1):72–87. doi: 10.1084/jem.161.1.72. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sakaguchi S., Sakaguchi N., Asano M., Itoh M., Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995 Aug 1;155(3):1151–1164. [PubMed] [Google Scholar]
  30. Sakaguchi S., Sakaguchi N. Organ-specific autoimmune disease induced in mice by elimination of T cell subsets. V. Neonatal administration of cyclosporin A causes autoimmune disease. J Immunol. 1989 Jan 15;142(2):471–480. [PubMed] [Google Scholar]
  31. Sakaguchi S., Sakaguchi N. Thymus and autoimmunity: capacity of the normal thymus to produce pathogenic self-reactive T cells and conditions required for their induction of autoimmune disease. J Exp Med. 1990 Aug 1;172(2):537–545. doi: 10.1084/jem.172.2.537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Sakaguchi S., Takahashi T., Nishizuka Y. Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med. 1982 Dec 1;156(6):1577–1586. doi: 10.1084/jem.156.6.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sakaguchi S., Takahashi T., Nishizuka Y. Study on cellular events in postthymectomy autoimmune oophoritis in mice. I. Requirement of Lyt-1 effector cells for oocytes damage after adoptive transfer. J Exp Med. 1982 Dec 1;156(6):1565–1576. doi: 10.1084/jem.156.6.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sakaguchi S., Toda M., Asano M., Itoh M., Morse S. S., Sakaguchi N. T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J Autoimmun. 1996 Apr;9(2):211–220. doi: 10.1006/jaut.1996.0026. [DOI] [PubMed] [Google Scholar]
  35. Schneider R., Lees R. K., Pedrazzini T., Zinkernagel R. M., Hengartner H., MacDonald H. R. Postnatal disappearance of self-reactive (V beta 6+) cells from the thymus of Mlsa mice. Implications for T cell development and autoimmunity. J Exp Med. 1989 Jun 1;169(6):2149–2158. doi: 10.1084/jem.169.6.2149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Silverman D. A., Rose N. R. Neonatal thymectomy increases the incidence of spontaneous and methylcholanthrene-enhanced thyroiditis in rats. Science. 1974 Apr 12;184(4133):162–163. doi: 10.1126/science.184.4133.162. [DOI] [PubMed] [Google Scholar]
  37. Smith H., Chen I. M., Kubo R., Tung K. S. Neonatal thymectomy results in a repertoire enriched in T cells deleted in adult thymus. Science. 1989 Aug 18;245(4919):749–752. doi: 10.1126/science.2788921. [DOI] [PubMed] [Google Scholar]
  38. Smith H., Lou Y. H., Lacy P., Tung K. S. Tolerance mechanism in experimental ovarian and gastric autoimmune diseases. J Immunol. 1992 Sep 15;149(6):2212–2218. [PubMed] [Google Scholar]
  39. Sprent J., Kosaka H. T cell tolerance and self/nonself discrimination. Autoimmunity. 1993;15(2):155–161. doi: 10.3109/08916939309043890. [DOI] [PubMed] [Google Scholar]
  40. Sugihara S., Izumi Y., Yoshioka T., Yagi H., Tsujimura T., Tarutani O., Kohno Y., Murakami S., Hamaoka T., Fujiwara H. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. I. Requirement of Lyt-1 dull L3T4 bright normal T cells for the induction of thyroiditis. J Immunol. 1988 Jul 1;141(1):105–113. [PubMed] [Google Scholar]
  41. Swain S. L., Bradley L. M., Croft M., Tonkonogy S., Atkins G., Weinberg A. D., Duncan D. D., Hedrick S. M., Dutton R. W., Huston G. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol Rev. 1991 Oct;123:115–144. doi: 10.1111/j.1600-065x.1991.tb00608.x. [DOI] [PubMed] [Google Scholar]
  42. Taguchi O., Nishizuka Y. Experimental autoimmune orchitis after neonatal thymectomy in the mouse. Clin Exp Immunol. 1981 Nov;46(2):425–434. [PMC free article] [PubMed] [Google Scholar]
  43. Taguchi O., Nishizuka Y., Sakakura T., Kojima A. Autoimmune oophoritis in thymectomized mice: detection of circulating antibodies against oocytes. Clin Exp Immunol. 1980 Jun;40(3):540–553. [PMC free article] [PubMed] [Google Scholar]
  44. Tung K. S., Smith S., Matzner P., Kasai K., Oliver J., Feuchter F., Anderson R. E. Murine autoimmune oophoritis, epididymoorchitis, and gastritis induced by day 3 thymectomy. Autoantibodies. Am J Pathol. 1987 Feb;126(2):303–314. [PMC free article] [PubMed] [Google Scholar]
  45. Tung K. S., Smith S., Teuscher C., Cook C., Anderson R. E. Murine autoimmune oophoritis, epididymoorchitis, and gastritis induced by day 3 thymectomy. Immunopathology. Am J Pathol. 1987 Feb;126(2):293–302. [PMC free article] [PubMed] [Google Scholar]
  46. Vitetta E. S., Berton M. T., Burger C., Kepron M., Lee W. T., Yin X. M. Memory B and T cells. Annu Rev Immunol. 1991;9:193–217. doi: 10.1146/annurev.iy.09.040191.001205. [DOI] [PubMed] [Google Scholar]
  47. Webb S., Morris C., Sprent J. Extrathymic tolerance of mature T cells: clonal elimination as a consequence of immunity. Cell. 1990 Dec 21;63(6):1249–1256. doi: 10.1016/0092-8674(90)90420-j. [DOI] [PubMed] [Google Scholar]
  48. Wick G., Kite J. H., Jr, Witebsky E. Spontaneous thyroiditis in the obese strain of chickens. IV. The effect of thymectomy and thymo-bursectomy on the development of the disease. J Immunol. 1970 Jan;104(1):54–62. [PubMed] [Google Scholar]
  49. Yunis E. J., Hong R., Grewe M. A., Martinez C., Cornelius E., Good R. A. Postthymectomy wasting associated with autoimmune phenomena. I. Antiglobulin-positive anemia in A and C57BL-6 Ks mice. J Exp Med. 1967 May 1;125(5):947–966. doi: 10.1084/jem.125.5.947. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES