Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):465–472. doi: 10.1084/jem.184.2.465

Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo

PMCID: PMC2192710  PMID: 8760800

Abstract

Immunization with defined tumor antigens is currently limited to a small number of cancers where candidates for tumor rejection antigens have been identified. In this study we investigated whether pulsing dendritic cells (DC) with tumor-derived RNA is an effective way to induce CTL and tumor immunity. DC pulsed with in vitro synthesized chicken ovalbumin (OVA) RNA were more effective than OVA peptide-pulsed DC in stimulating primary, OVA-specific CTL responses in vitro. DC pulsed with unfractionated RNA (total or polyA+) from OVA-expressing tumor cells were as effective as DC pulsed with OVA peptide at stimulating CTL responses. Induction of OVA-specific CTL was abrogated when polyA+ RNA from OVA-expressing cells was treated with an OVA- specific antisense oligodeoxynucleotide and RNase H, showing that sensitization of DC was indeed mediated by OVA RNA. Mice vaccinated with DC pulsed with RNA from OVA-expressing tumor cells were protected against a challenge with OVA-expressing tumor cells. In the poorly immunogenic, highly metastatic, B16/F10.9 tumor model a dramatic reduction in lung metastases was observed in mice vaccinated with DC pulsed with tumor-derived RNA (total or polyA+, but not polyA- RNA). The finding that RNA transcribed in vitro from cDNA cloned in a bacterial plasmid was highly effective in sensitizing DC shows that amplification of the antigenic content from a small number of tumor cells is feasible, thus expanding the potential use of RNA-pulsed DC- based vaccines for patients bearing very small, possibly microscopic, tumors.

Full Text

The Full Text of this article is available as a PDF (835.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anichini A., Mortarini R., Maccalli C., Squarcina P., Fleischhauer K., Mascheroni L., Parmiani G. Cytotoxic T cells directed to tumor antigens not expressed on normal melanocytes dominate HLA-A2.1-restricted immune repertoire to melanoma. J Immunol. 1996 Jan 1;156(1):208–217. [PubMed] [Google Scholar]
  2. Boon T., van der Bruggen P. Human tumor antigens recognized by T lymphocytes. J Exp Med. 1996 Mar 1;183(3):725–729. doi: 10.1084/jem.183.3.725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carbone F. R., Moore M. W., Sheil J. M., Bevan M. J. Induction of cytotoxic T lymphocytes by primary in vitro stimulation with peptides. J Exp Med. 1988 Jun 1;167(6):1767–1779. doi: 10.1084/jem.167.6.1767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Celluzzi C. M., Mayordomo J. I., Storkus W. J., Lotze M. T., Falo L. D., Jr Peptide-pulsed dendritic cells induce antigen-specific CTL-mediated protective tumor immunity. J Exp Med. 1996 Jan 1;183(1):283–287. doi: 10.1084/jem.183.1.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  6. Conry R. M., LoBuglio A. F., Wright M., Sumerel L., Pike M. J., Johanning F., Benjamin R., Lu D., Curiel D. T. Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. 1995 Apr 1;55(7):1397–1400. [PubMed] [Google Scholar]
  7. De Bruijn M. L., Schumacher T. N., Nieland J. D., Ploegh H. L., Kast W. M., Melief C. J. Peptide loading of empty major histocompatibility complex molecules on RMA-S cells allows the induction of primary cytotoxic T lymphocyte responses. Eur J Immunol. 1991 Dec;21(12):2963–2970. doi: 10.1002/eji.1830211210. [DOI] [PubMed] [Google Scholar]
  8. Donis-Keller H. Site specific enzymatic cleavage of RNA. Nucleic Acids Res. 1979 Sep 11;7(1):179–192. doi: 10.1093/nar/7.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finn O. J. Tumor-rejection antigens recognized by T lymphocytes. Curr Opin Immunol. 1993 Oct;5(5):701–708. doi: 10.1016/0952-7915(93)90124-b. [DOI] [PubMed] [Google Scholar]
  10. Flamand V., Sornasse T., Thielemans K., Demanet C., Bakkus M., Bazin H., Tielemans F., Leo O., Urbain J., Moser M. Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol. 1994 Mar;24(3):605–610. doi: 10.1002/eji.1830240317. [DOI] [PubMed] [Google Scholar]
  11. Grabbe S., Bruvers S., Gallo R. L., Knisely T. L., Nazareno R., Granstein R. D. Tumor antigen presentation by murine epidermal cells. J Immunol. 1991 May 15;146(10):3656–3661. [PubMed] [Google Scholar]
  12. Houghton A. N. Cancer antigens: immune recognition of self and altered self. J Exp Med. 1994 Jul 1;180(1):1–4. doi: 10.1084/jem.180.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hsu F. J., Benike C., Fagnoni F., Liles T. M., Czerwinski D., Taidi B., Engleman E. G., Levy R. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996 Jan;2(1):52–58. doi: 10.1038/nm0196-52. [DOI] [PubMed] [Google Scholar]
  14. Johnston J. V., Malacko A. R., Mizuno M. T., McGowan P., Hellström I., Hellström K. E., Marquardt H., Chen L. B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes. J Exp Med. 1996 Mar 1;183(3):791–800. doi: 10.1084/jem.183.3.791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ljunggren H. G., Kärre K. Host resistance directed selectively against H-2-deficient lymphoma variants. Analysis of the mechanism. J Exp Med. 1985 Dec 1;162(6):1745–1759. doi: 10.1084/jem.162.6.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Macatonia S. E., Taylor P. M., Knight S. C., Askonas B. A. Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro. J Exp Med. 1989 Apr 1;169(4):1255–1264. doi: 10.1084/jem.169.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martinon F., Krishnan S., Lenzen G., Magné R., Gomard E., Guillet J. G., Lévy J. P., Meulien P. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur J Immunol. 1993 Jul;23(7):1719–1722. doi: 10.1002/eji.1830230749. [DOI] [PubMed] [Google Scholar]
  18. Mayordomo J. I., Zorina T., Storkus W. J., Zitvogel L., Celluzzi C., Falo L. D., Melief C. J., Ildstad S. T., Kast W. M., Deleo A. B. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med. 1995 Dec;1(12):1297–1302. doi: 10.1038/nm1295-1297. [DOI] [PubMed] [Google Scholar]
  19. Moore M. W., Carbone F. R., Bevan M. J. Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell. 1988 Sep 9;54(6):777–785. doi: 10.1016/s0092-8674(88)91043-4. [DOI] [PubMed] [Google Scholar]
  20. Nair S. K., Snyder D., Gilboa E. Cells treated with TAP-2 antisense oligonucleotides are potent antigen-presenting cells in vitro and in vivo. J Immunol. 1996 Mar 1;156(5):1772–1780. [PubMed] [Google Scholar]
  21. Nair S., Zhou F., Reddy R., Huang L., Rouse B. T. Soluble proteins delivered to dendritic cells via pH-sensitive liposomes induce primary cytotoxic T lymphocyte responses in vitro. J Exp Med. 1992 Feb 1;175(2):609–612. doi: 10.1084/jem.175.2.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ossevoort M. A., Feltkamp M. C., van Veen K. J., Melief C. J., Kast W. M. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol. 1995 Aug;18(2):86–94. doi: 10.1097/00002371-199508000-00002. [DOI] [PubMed] [Google Scholar]
  23. Paglia P., Chiodoni C., Rodolfo M., Colombo M. P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med. 1996 Jan 1;183(1):317–322. doi: 10.1084/jem.183.1.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Parmiani G. Tumor immunity as autoimmunity: tumor antigens include normal self proteins which stimulate anergic peripheral T cells. Immunol Today. 1993 Nov;14(11):536–538. doi: 10.1016/0167-5699(93)90183-L. [DOI] [PubMed] [Google Scholar]
  25. Porgador A., Feldman M., Eisenbach L. H-2Kb transfection of B16 melanoma cells results in reduced tumourigenicity and metastatic competence. J Immunogenet. 1989 Aug-Oct;16(4-5):291–303. doi: 10.1111/j.1744-313x.1989.tb00475.x. [DOI] [PubMed] [Google Scholar]
  26. Porgador A., Gilboa E. Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med. 1995 Jul 1;182(1):255–260. doi: 10.1084/jem.182.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Porgador A., Snyder D., Gilboa E. Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol. 1996 Apr 15;156(8):2918–2926. [PubMed] [Google Scholar]
  28. Porgador A., Tzehoval E., Vadai E., Feldman M., Eisenbach L. Combined vaccination with major histocompatibility class I and interleukin 2 gene-transduced melanoma cells synergizes the cure of postsurgical established lung metastases. Cancer Res. 1995 Nov 1;55(21):4941–4949. [PubMed] [Google Scholar]
  29. Qiu P., Ziegelhoffer P., Sun J., Yang N. S. Gene gun delivery of mRNA in situ results in efficient transgene expression and genetic immunization. Gene Ther. 1996 Mar;3(3):262–268. [PubMed] [Google Scholar]
  30. Rötzschke O., Falk K., Stevanović S., Jung G., Walden P., Rammensee H. G. Exact prediction of a natural T cell epitope. Eur J Immunol. 1991 Nov;21(11):2891–2894. doi: 10.1002/eji.1830211136. [DOI] [PubMed] [Google Scholar]
  31. Shimizu J., Suda T., Yoshioka T., Kosugi A., Fujiwara H., Hamaoka T. Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol. 1989 Feb 1;142(3):1053–1059. [PubMed] [Google Scholar]
  32. Steinman R. M. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296. doi: 10.1146/annurev.iy.09.040191.001415. [DOI] [PubMed] [Google Scholar]
  33. Volgmann T., Klein-Struckmeier A., Mohr H. A fluorescence-based assay for quantitation of lymphokine-activated killer cell activity. J Immunol Methods. 1989 Apr 21;119(1):45–51. doi: 10.1016/0022-1759(89)90379-7. [DOI] [PubMed] [Google Scholar]
  34. Walker C., Selby M., Erickson A., Cataldo D., Valensi J. P., Van Nest G. V. Cationic lipids direct a viral glycoprotein into the class I major histocompatibility complex antigen-presentation pathway. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):7915–7918. doi: 10.1073/pnas.89.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zitvogel L., Mayordomo J. I., Tjandrawan T., DeLeo A. B., Clarke M. R., Lotze M. T., Storkus W. J. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med. 1996 Jan 1;183(1):87–97. doi: 10.1084/jem.183.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES