Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):557–567. doi: 10.1084/jem.184.2.557

Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression

PMCID: PMC2192721  PMID: 8760809

Abstract

Nitric oxide (NO)-related activity has been shown to be protective against Plasmodium falciparum in vitro. It has been hypothesized, however, that excess NO production contributes to the pathogenesis of cerebral malaria. The purpose of this study was to compare markers of NO production [urinary and plasma nitrate + nitrite (NOx)], leukocyte- inducible nitric oxide synthase type 2 (NOS2), and plasma TNF-alpha and IL-10 levels with disease severity in 191 Tanzanian children with and without malaria. Urine NOx excretion and plasma NOx levels (corrected for renal impairment) were inversely related to disease severity, with levels highest in subclinical infection and lowest in fatal cerebral malaria. Results could not be explained by differences in dietary nitrate ingestion among the groups. Plasma levels of IL-10, a cytokine known to suppress NO synthesis, increased with disease severity. Leukocyte NOS2 antigen was detectable in all control children tested and in all those with subclinical infection, but was undetectable in all but one subject with cerebral malaria. This suppression of NO synthesis in cerebral malaria may contribute to pathogenesis. In contrast, high fasting NOx levels and leukocyte NOS2 in healthy controls and asymptomatic infection suggest that increased NO synthesis might protect against clinical disease. NO appears to have a protective rather than pathological role in African children with malaria.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan R. J., Beattie P., Bate C., Van Hensbroek M. B., Morris-Jones S., Greenwood B. M., Kwiatkowski D. Strain variation in tumor necrosis factor induction by parasites from children with acute falciparum malaria. Infect Immun. 1995 Apr;63(4):1173–1175. doi: 10.1128/iai.63.4.1173-1175.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berendt A. R., Simmons D. L., Tansey J., Newbold C. I., Marsh K. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature. 1989 Sep 7;341(6237):57–59. doi: 10.1038/341057a0. [DOI] [PubMed] [Google Scholar]
  3. Berendt A. R., Tumer G. D., Newbold C. I. Cerebral malaria: the sequestration hypothesis. Parasitol Today. 1994 Oct;10(10):412–414. doi: 10.1016/0169-4758(94)90238-0. [DOI] [PubMed] [Google Scholar]
  4. Bogdan C., Nathan C. Modulation of macrophage function by transforming growth factor beta, interleukin-4, and interleukin-10. Ann N Y Acad Sci. 1993 Jun 23;685:713–739. doi: 10.1111/j.1749-6632.1993.tb35934.x. [DOI] [PubMed] [Google Scholar]
  5. Bogdan C., Vodovotz Y., Nathan C. Macrophage deactivation by interleukin 10. J Exp Med. 1991 Dec 1;174(6):1549–1555. doi: 10.1084/jem.174.6.1549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clark I. A., Rockett K. A., Cowden W. B. Proposed link between cytokines, nitric oxide and human cerebral malaria. Parasitol Today. 1991 Aug;7(8):205–207. doi: 10.1016/0169-4758(91)90142-b. [DOI] [PubMed] [Google Scholar]
  7. Clark I. A., Yaman F. A., Rockett K. A. Enhanced production of reactive nitrogen intermediates in human and murine malaria: reply. Parasitol Today. 1995 Nov;11(11):424–425. doi: 10.1016/0169-4758(95)80024-7. [DOI] [PubMed] [Google Scholar]
  8. Cot S., Ringwald P., Mulder B., Miailhes P., Yap-Yap J., Nussler A. K., Eling W. M. Nitric oxide in cerebral malaria. J Infect Dis. 1994 Jun;169(6):1417–1418. doi: 10.1093/infdis/169.6.1417. [DOI] [PubMed] [Google Scholar]
  9. Cunha F. Q., Moncada S., Liew F. Y. Interleukin-10 (IL-10) inhibits the induction of nitric oxide synthase by interferon-gamma in murine macrophages. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1155–1159. doi: 10.1016/0006-291x(92)91852-h. [DOI] [PubMed] [Google Scholar]
  10. De Caterina R., Libby P., Peng H. B., Thannickal V. J., Rajavashisth T. B., Gimbrone M. A., Jr, Shin W. S., Liao J. K. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J Clin Invest. 1995 Jul;96(1):60–68. doi: 10.1172/JCI118074. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ding A. H., Nathan C. F., Stuehr D. J. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J Immunol. 1988 Oct 1;141(7):2407–2412. [PubMed] [Google Scholar]
  12. Drapier J. C., Wietzerbin J., Hibbs J. B., Jr Interferon-gamma and tumor necrosis factor induce the L-arginine-dependent cytotoxic effector mechanism in murine macrophages. Eur J Immunol. 1988 Oct;18(10):1587–1592. doi: 10.1002/eji.1830181018. [DOI] [PubMed] [Google Scholar]
  13. Gazzinelli R. T., Oswald I. P., James S. L., Sher A. IL-10 inhibits parasite killing and nitrogen oxide production by IFN-gamma-activated macrophages. J Immunol. 1992 Mar 15;148(6):1792–1796. [PubMed] [Google Scholar]
  14. Ghigo D., Todde R., Ginsburg H., Costamagna C., Gautret P., Bussolino F., Ulliers D., Giribaldi G., Deharo E., Gabrielli G. Erythrocyte stages of Plasmodium falciparum exhibit a high nitric oxide synthase (NOS) activity and release an NOS-inducing soluble factor. J Exp Med. 1995 Sep 1;182(3):677–688. doi: 10.1084/jem.182.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Grau G. E., Taylor T. E., Molyneux M. E., Wirima J. J., Vassalli P., Hommel M., Lambert P. H. Tumor necrosis factor and disease severity in children with falciparum malaria. N Engl J Med. 1989 Jun 15;320(24):1586–1591. doi: 10.1056/NEJM198906153202404. [DOI] [PubMed] [Google Scholar]
  16. Green L. C., Ruiz de Luzuriaga K., Wagner D. A., Rand W., Istfan N., Young V. R., Tannenbaum S. R. Nitrate biosynthesis in man. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7764–7768. doi: 10.1073/pnas.78.12.7764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Green S. J., Scheller L. F., Marletta M. A., Seguin M. C., Klotz F. W., Slayter M., Nelson B. J., Nacy C. A. Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunol Lett. 1994 Dec;43(1-2):87–94. doi: 10.1016/0165-2478(94)00158-8. [DOI] [PubMed] [Google Scholar]
  18. Greenwood B., Marsh K., Snow R. Why do some African children develop severe malaria? Parasitol Today. 1991 Oct;7(10):277–281. doi: 10.1016/0169-4758(91)90096-7. [DOI] [PubMed] [Google Scholar]
  19. Gyan B., Troye-Blomberg M., Perlmann P., Björkman A. Human monocytes cultured with and without interferon-gamma inhibit Plasmodium falciparum parasite growth in vitro via secretion of reactive nitrogen intermediates. Parasite Immunol. 1994 Jul;16(7):371–375. doi: 10.1111/j.1365-3024.1994.tb00362.x. [DOI] [PubMed] [Google Scholar]
  20. Hibbs J. B., Jr, Westenfelder C., Taintor R., Vavrin Z., Kablitz C., Baranowski R. L., Ward J. H., Menlove R. L., McMurry M. P., Kushner J. P. Evidence for cytokine-inducible nitric oxide synthesis from L-arginine in patients receiving interleukin-2 therapy. J Clin Invest. 1992 Mar;89(3):867–877. doi: 10.1172/JCI115666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ho M., Sexton M. M., Tongtawe P., Looareesuwan S., Suntharasamai P., Webster H. K. Interleukin-10 inhibits tumor necrosis factor production but not antigen-specific lymphoproliferation in acute Plasmodium falciparum malaria. J Infect Dis. 1995 Sep;172(3):838–844. doi: 10.1093/infdis/172.3.838. [DOI] [PubMed] [Google Scholar]
  22. Klotz F. W., Scheller L. F., Seguin M. C., Kumar N., Marletta M. A., Green S. J., Azad A. F. Co-localization of inducible-nitric oxide synthase and Plasmodium berghei in hepatocytes from rats immunized with irradiated sporozoites. J Immunol. 1995 Apr 1;154(7):3391–3395. [PubMed] [Google Scholar]
  23. Kosaka H., Imaizumi K., Imai K., Tyuma I. Stoichiometry of the reaction of oxyhemoglobin with nitrite. Biochim Biophys Acta. 1979 Nov 23;581(1):184–188. doi: 10.1016/0005-2795(79)90235-6. [DOI] [PubMed] [Google Scholar]
  24. Kremsner P. G., Winkler S., Wildling E., Prada J., Bienzle U., Graninger W., Nüssler A. K. High plasma levels of nitrogen oxides are associated with severe disease and correlate with rapid parasitological and clinical cure in Plasmodium falciparum malaria. Trans R Soc Trop Med Hyg. 1996 Jan-Feb;90(1):44–47. doi: 10.1016/s0035-9203(96)90476-9. [DOI] [PubMed] [Google Scholar]
  25. Kwiatkowski D. Cytokines and anti-disease immunity to malaria. Res Immunol. 1991 Oct;142(8):707–712. doi: 10.1016/0923-2494(91)90154-b. [DOI] [PubMed] [Google Scholar]
  26. Kwiatkowski D., Hill A. V., Sambou I., Twumasi P., Castracane J., Manogue K. R., Cerami A., Brewster D. R., Greenwood B. M. TNF concentration in fatal cerebral, non-fatal cerebral, and uncomplicated Plasmodium falciparum malaria. Lancet. 1990 Nov 17;336(8725):1201–1204. doi: 10.1016/0140-6736(90)92827-5. [DOI] [PubMed] [Google Scholar]
  27. Looareesuwan S., Wilairatana P., Krishna S., Kendall B., Vannaphan S., Viravan C., White N. J. Magnetic resonance imaging of the brain in patients with cerebral malaria. Clin Infect Dis. 1995 Aug;21(2):300–309. doi: 10.1093/clinids/21.2.300. [DOI] [PubMed] [Google Scholar]
  28. Mackenzie I. M., Ekangaki A., Young J. D., Garrard C. S. Effect of renal function on serum nitrogen oxide concentrations. Clin Chem. 1996 Mar;42(3):440–444. [PubMed] [Google Scholar]
  29. McGuire W., Hill A. V., Allsopp C. E., Greenwood B. M., Kwiatkowski D. Variation in the TNF-alpha promoter region associated with susceptibility to cerebral malaria. Nature. 1994 Oct 6;371(6497):508–510. doi: 10.1038/371508a0. [DOI] [PubMed] [Google Scholar]
  30. Mellouk S., Green S. J., Nacy C. A., Hoffman S. L. IFN-gamma inhibits development of Plasmodium berghei exoerythrocytic stages in hepatocytes by an L-arginine-dependent effector mechanism. J Immunol. 1991 Jun 1;146(11):3971–3976. [PubMed] [Google Scholar]
  31. Mellouk S., Hoffman S. L., Liu Z. Z., de la Vega P., Billiar T. R., Nussler A. K. Nitric oxide-mediated antiplasmodial activity in human and murine hepatocytes induced by gamma interferon and the parasite itself: enhancement by exogenous tetrahydrobiopterin. Infect Immun. 1994 Sep;62(9):4043–4046. doi: 10.1128/iai.62.9.4043-4046.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Molyneux M. E., Taylor T. E., Wirima J. J., Borgstein A. Clinical features and prognostic indicators in paediatric cerebral malaria: a study of 131 comatose Malawian children. Q J Med. 1989 May;71(265):441–459. [PubMed] [Google Scholar]
  33. Newton C. R., Peshu N., Kendall B., Kirkham F. J., Sowunmi A., Waruiru C., Mwangi I., Murphy S. A., Marsh K. Brain swelling and ischaemia in Kenyans with cerebral malaria. Arch Dis Child. 1994 Apr;70(4):281–287. doi: 10.1136/adc.70.4.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Nussler A. K., Di Silvio M., Billiar T. R., Hoffman R. A., Geller D. A., Selby R., Madariaga J., Simmons R. L. Stimulation of the nitric oxide synthase pathway in human hepatocytes by cytokines and endotoxin. J Exp Med. 1992 Jul 1;176(1):261–264. doi: 10.1084/jem.176.1.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Nussler A. K., Eling W., Kremsher P. G. Patients with Plasmodium falciparum malaria and Plasmodium vivax malaria show increased nitrite and nitrate plasma levels. J Infect Dis. 1994 Jun;169(6):1418–1419. doi: 10.1093/infdis/169.6.1418. [DOI] [PubMed] [Google Scholar]
  36. Nüssler A., Drapier J. C., Rénia L., Pied S., Miltgen F., Gentilini M., Mazier D. L-arginine-dependent destruction of intrahepatic malaria parasites in response to tumor necrosis factor and/or interleukin 6 stimulation. Eur J Immunol. 1991 Jan;21(1):227–230. doi: 10.1002/eji.1830210134. [DOI] [PubMed] [Google Scholar]
  37. Ockenhouse C. F., Tegoshi T., Maeno Y., Benjamin C., Ho M., Kan K. E., Thway Y., Win K., Aikawa M., Lobb R. R. Human vascular endothelial cell adhesion receptors for Plasmodium falciparum-infected erythrocytes: roles for endothelial leukocyte adhesion molecule 1 and vascular cell adhesion molecule 1. J Exp Med. 1992 Oct 1;176(4):1183–1189. doi: 10.1084/jem.176.4.1183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Peng H. B., Libby P., Liao J. K. Induction and stabilization of I kappa B alpha by nitric oxide mediates inhibition of NF-kappa B. J Biol Chem. 1995 Jun 9;270(23):14214–14219. doi: 10.1074/jbc.270.23.14214. [DOI] [PubMed] [Google Scholar]
  39. Peyron F., Burdin N., Ringwald P., Vuillez J. P., Rousset F., Banchereau J. High levels of circulating IL-10 in human malaria. Clin Exp Immunol. 1994 Feb;95(2):300–303. doi: 10.1111/j.1365-2249.1994.tb06527.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Prada J., Kremsner P. G. Enhanced production of reactive nitrogen intermediates in human and murine malaria. Parasitol Today. 1995 Nov;11(11):409–410. doi: 10.1016/0169-4758(95)80019-0. [DOI] [PubMed] [Google Scholar]
  41. Rockett K. A., Awburn M. M., Cowden W. B., Clark I. A. Killing of Plasmodium falciparum in vitro by nitric oxide derivatives. Infect Immun. 1991 Sep;59(9):3280–3283. doi: 10.1128/iai.59.9.3280-3283.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Schwartz G. J., Haycock G. B., Spitzer A. Plasma creatinine and urea concentration in children: normal values for age and sex. J Pediatr. 1976 May;88(5):828–830. doi: 10.1016/s0022-3476(76)81125-0. [DOI] [PubMed] [Google Scholar]
  43. Snow R. W., Bastos de Azevedo I., Lowe B. S., Kabiru E. W., Nevill C. G., Mwankusye S., Kassiga G., Marsh K., Teuscher T. Severe childhood malaria in two areas of markedly different falciparum transmission in east Africa. Acta Trop. 1994 Sep;57(4):289–300. doi: 10.1016/0001-706x(94)90074-4. [DOI] [PubMed] [Google Scholar]
  44. Tachado S. D., Gerold P., McConville M. J., Baldwin T., Quilici D., Schwarz R. T., Schofield L. Glycosylphosphatidylinositol toxin of Plasmodium induces nitric oxide synthase expression in macrophages and vascular endothelial cells by a protein tyrosine kinase-dependent and protein kinase C-dependent signaling pathway. J Immunol. 1996 Mar 1;156(5):1897–1907. [PubMed] [Google Scholar]
  45. Taramelli D., Basilico N., Pagani E., Grande R., Monti D., Ghione M., Olliaro P. The heme moiety of malaria pigment (beta-hematin) mediates the inhibition of nitric oxide and tumor necrosis factor-alpha production by lipopolysaccharide-stimulated macrophages. Exp Parasitol. 1995 Dec;81(4):501–511. doi: 10.1006/expr.1995.1143. [DOI] [PubMed] [Google Scholar]
  46. Tiao G., Rafferty J., Ogle C., Fischer J. E., Hasselgren P. O. Detrimental effect of nitric oxide synthase inhibition during endotoxemia may be caused by high levels of tumor necrosis factor and interleukin-6. Surgery. 1994 Aug;116(2):332–338. [PubMed] [Google Scholar]
  47. Turner G. D., Morrison H., Jones M., Davis T. M., Looareesuwan S., Buley I. D., Gatter K. C., Newbold C. I., Pukritayakamee S., Nagachinta B. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am J Pathol. 1994 Nov;145(5):1057–1069. [PMC free article] [PubMed] [Google Scholar]
  48. Waller D., Krishna S., Crawley J., Miller K., Nosten F., Chapman D., ter Kuile F. O., Craddock C., Berry C., Holloway P. A. Clinical features and outcome of severe malaria in Gambian children. Clin Infect Dis. 1995 Sep;21(3):577–587. doi: 10.1093/clinids/21.3.577. [DOI] [PubMed] [Google Scholar]
  49. Weinberg J. B., Misukonis M. A., Shami P. J., Mason S. N., Sauls D. L., Dittman W. A., Wood E. R., Smith G. K., McDonald B., Bachus K. E. Human mononuclear phagocyte inducible nitric oxide synthase (iNOS): analysis of iNOS mRNA, iNOS protein, biopterin, and nitric oxide production by blood monocytes and peritoneal macrophages. Blood. 1995 Aug 1;86(3):1184–1195. [PubMed] [Google Scholar]
  50. Westfelt U. N., Benthin G., Lundin S., Stenqvist O., Wennmalm A. Conversion of inhaled nitric oxide to nitrate in man. Br J Pharmacol. 1995 Apr;114(8):1621–1624. doi: 10.1111/j.1476-5381.1995.tb14948.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. White J. W., Jr Relative significance of dietary sources of nitrate and nitrite. J Agric Food Chem. 1975 Sep-Oct;23(5):886–891. doi: 10.1021/jf60201a034. [DOI] [PubMed] [Google Scholar]
  52. Zeballos G. A., Bernstein R. D., Thompson C. I., Forfia P. R., Seyedi N., Shen W., Kaminiski P. M., Wolin M. S., Hintze T. H. Pharmacodynamics of plasma nitrate/nitrite as an indication of nitric oxide formation in conscious dogs. Circulation. 1995 Jun 15;91(12):2982–2988. doi: 10.1161/01.cir.91.12.2982. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES