Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):585–595. doi: 10.1084/jem.184.2.585

Activation of phospholipase D is tightly coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan by human macrophages

PMCID: PMC2192724  PMID: 8760812

Abstract

Phagocytosis of Mycobacterium tuberculosis by human mononuclear phagocytes is mediated primarily by complement receptors (CRs) but the transmembrane signaling mechanisms that regulate phagocytosis of the bacterium are unknown. We have analyzed the activation of phospholipase D (PLD) during phagocytosis of the virulent Erdman and attenuated H37Ra strains of M. tuberculosis by human monocyte-derived macrophages (MDMs), radiolabeled with [3H]-lyso-phosphatidylcholine. Phagocytosis of either Erdman or H37Ra M. tuberculosis in the presence of autologous non-immune serum was associated with a 2.5-3-fold increase in phosphatidic acid (PA). Definitive evidence for activation of PLD by M. tuberculosis was provided by markedly increased generation of the PLD- specific product phosphatidylethanol (PEt) (9.9-fold increases in [3H]- PEt for both Erdman and H37Ra strains compared to control, P < 0.001, n = 12), in the presence of 0.5% ethanol. Phagocytosis of opsonized zymosan (OZ), which is also mediated by CRs, was similarly associated with activation of PLD (12.2-fold increase in PEt, P < 0.001, n = 12). The competitive PLD inhibitor 2,3-diphosphoglycerate (2,3-DPG) produced concentration-dependent inhibition of PLD activity stimulated by either M. tuberculosis (-78 +/- 8%) or OZ (-73 +/- 6%). Inhibition of PLD by 2,3-DPG was associated with concentration-dependent reductions in phagocytosis of M. tuberculosis (-74 +/- 4%) and OZ (-68 +/- 5%). Addition of purified PLD from Streptomyces chromofuscus to 2,3-DPG- treated macrophages restored phagocytosis of M. tuberculosis to control levels. Inhibition of M. tuberculosis- or OZ-stimulated PA generation by ethanol was associated with concentration-dependent reductions in phagocytosis of both particles. Incubation of MDMs with either Erdman or H37Ra M. tuberculosis, or OZ, resulted in rapid (onset 1 min) and sustained (60 min) increases in the tyrosine phosphorylation (Tyr-P) of multiple MDM proteins. Prominent Tyr-P was noted in proteins of 150, 95, 72, 56, and 42 kD. The protein tyrosine kinase (PTK) inhibitors genistein and herbimycin A reduced M. tuberculosis-stimulated PLD activity by 66-84%. Inhibition of PLD activity by genistein or herbimycin A was associated with inhibition of phagocytosis of M. tuberculosis and OZ. These data demonstrate that PLD is activated during macrophage phagocytosis of M. tuberculosis or OZ, that PTKs are involved in this stimulation of PLD, and that the extent of phagocytosis of these particles is tightly coupled to activation of PLD.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agwu D. E., McPhail L. C., Sozzani S., Bass D. A., McCall C. E. Phosphatidic acid as a second messenger in human polymorphonuclear leukocytes. Effects on activation of NADPH oxidase. J Clin Invest. 1991 Aug;88(2):531–539. doi: 10.1172/JCI115336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  3. Allen L. H., Aderem A. A role for MARCKS, the alpha isozyme of protein kinase C and myosin I in zymosan phagocytosis by macrophages. J Exp Med. 1995 Sep 1;182(3):829–840. doi: 10.1084/jem.182.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berton G., Fumagalli L., Laudanna C., Sorio C. Beta 2 integrin-dependent protein tyrosine phosphorylation and activation of the FGR protein tyrosine kinase in human neutrophils. J Cell Biol. 1994 Aug;126(4):1111–1121. doi: 10.1083/jcb.126.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Billah M. M., Eckel S., Mullmann T. J., Egan R. W., Siegel M. I. Phosphatidylcholine hydrolysis by phospholipase D determines phosphatidate and diglyceride levels in chemotactic peptide-stimulated human neutrophils. Involvement of phosphatidate phosphohydrolase in signal transduction. J Biol Chem. 1989 Oct 15;264(29):17069–17077. [PubMed] [Google Scholar]
  6. Billah M. M. Phospholipase D and cell signaling. Curr Opin Immunol. 1993 Feb;5(1):114–123. doi: 10.1016/0952-7915(93)90090-f. [DOI] [PubMed] [Google Scholar]
  7. Bourgoin S., Grinstein S. Peroxides of vanadate induce activation of phospholipase D in HL-60 cells. Role of tyrosine phosphorylation. J Biol Chem. 1992 Jun 15;267(17):11908–11916. [PubMed] [Google Scholar]
  8. Brown H. A., Gutowski S., Moomaw C. R., Slaughter C., Sternweis P. C. ADP-ribosylation factor, a small GTP-dependent regulatory protein, stimulates phospholipase D activity. Cell. 1993 Dec 17;75(6):1137–1144. doi: 10.1016/0092-8674(93)90323-i. [DOI] [PubMed] [Google Scholar]
  9. Bussolino F., Fischer E., Turrini F., Kazatchkine M. D., Arese P. Platelet-activating factor enhances complement-dependent phagocytosis of diamide-treated erythrocytes by human monocytes through activation of protein kinase C and phosphorylation of complement receptor type one (CR1). J Biol Chem. 1989 Dec 25;264(36):21711–21719. [PubMed] [Google Scholar]
  10. Douvas G. S., Berger E. M., Repine J. E., Crowle A. J. Natural mycobacteriostatic activity in human monocyte-derived adherent cells. Am Rev Respir Dis. 1986 Jul;134(1):44–48. doi: 10.1164/arrd.1986.134.1.44. [DOI] [PubMed] [Google Scholar]
  11. Dubyak G. R., Schomisch S. J., Kusner D. J., Xie M. Phospholipase D activity in phagocytic leucocytes is synergistically regulated by G-protein- and tyrosine kinase-based mechanisms. Biochem J. 1993 May 15;292(Pt 1):121–128. doi: 10.1042/bj2920121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ezekowitz R. A., Sastry K., Bailly P., Warner A. Molecular characterization of the human macrophage mannose receptor: demonstration of multiple carbohydrate recognition-like domains and phagocytosis of yeasts in Cos-1 cells. J Exp Med. 1990 Dec 1;172(6):1785–1794. doi: 10.1084/jem.172.6.1785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ezekowitz R. A., Sim R. B., Hill M., Gordon S. Local opsonization by secreted macrophage complement components. Role of receptors for complement in uptake of zymosan. J Exp Med. 1984 Jan 1;159(1):244–260. doi: 10.1084/jem.159.1.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fukami K., Takenawa T. Phosphatidic acid that accumulates in platelet-derived growth factor-stimulated Balb/c 3T3 cells is a potential mitogenic signal. J Biol Chem. 1992 Jun 5;267(16):10988–10993. [PubMed] [Google Scholar]
  15. Fuortes M., Jin W. W., Nathan C. Beta 2 integrin-dependent tyrosine phosphorylation of paxillin in human neutrophils treated with tumor necrosis factor. J Cell Biol. 1994 Dec;127(5):1477–1483. doi: 10.1083/jcb.127.5.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fällman M., Andersson R., Andersson T. Signaling properties of CR3 (CD11b/CD18) and CR1 (CD35) in relation to phagocytosis of complement-opsonized particles. J Immunol. 1993 Jul 1;151(1):330–338. [PubMed] [Google Scholar]
  17. Fällman M., Gullberg M., Hellberg C., Andersson T. Complement receptor-mediated phagocytosis is associated with accumulation of phosphatidylcholine-derived diglyceride in human neutrophils. Involvement of phospholipase D and direct evidence for a positive feedback signal of protein kinase. J Biol Chem. 1992 Feb 5;267(4):2656–2663. [PubMed] [Google Scholar]
  18. Fällman M., Lew D. P., Stendahl O., Andersson T. Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol. J Clin Invest. 1989 Sep;84(3):886–891. doi: 10.1172/JCI114249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Gaynor C. D., McCormack F. X., Voelker D. R., McGowan S. E., Schlesinger L. S. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol. 1995 Dec 1;155(11):5343–5351. [PubMed] [Google Scholar]
  20. Greenberg S., Chang P., Silverstein S. C. Tyrosine phosphorylation of the gamma subunit of Fc gamma receptors, p72syk, and paxillin during Fc receptor-mediated phagocytosis in macrophages. J Biol Chem. 1994 Feb 4;269(5):3897–3902. [PubMed] [Google Scholar]
  21. Hirsch C. S., Ellner J. J., Russell D. G., Rich E. A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol. 1994 Jan 15;152(2):743–753. [PubMed] [Google Scholar]
  22. Jones G. A., Carpenter G. The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J Biol Chem. 1993 Oct 5;268(28):20845–20850. [PubMed] [Google Scholar]
  23. Kanaho Y., Nakai Y., Katoh M., Nozawa Y. The phosphatase inhibitor 2,3-diphosphoglycerate interferes with phospholipase D activation in rabbit peritoneal neutrophils. J Biol Chem. 1993 Jun 15;268(17):12492–12497. [PubMed] [Google Scholar]
  24. Kondo T., Inui H., Konishi F., Inagami T. Phospholipase D mimics platelet-derived growth factor as a competence factor in vascular smooth muscle cells. J Biol Chem. 1992 Nov 25;267(33):23609–23616. [PubMed] [Google Scholar]
  25. Kusner D. J., Schomisch S. J., Dubyak G. R. ATP-induced potentiation of G-protein-dependent phospholipase D activity in a cell-free system from U937 promonocytic leukocytes. J Biol Chem. 1993 Sep 25;268(27):19973–19982. [PubMed] [Google Scholar]
  26. McPhail L. C., Qualliotine-Mann D., Waite K. A. Cell-free activation of neutrophil NADPH oxidase by a phosphatidic acid-regulated protein kinase. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7931–7935. doi: 10.1073/pnas.92.17.7931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nakagawara A., Nathan C. F. A simple method for counting adherent cells: application to cultured human monocytes, macrophages and multinucleated giant cells. J Immunol Methods. 1983 Jan 28;56(2):261–268. doi: 10.1016/0022-1759(83)90418-0. [DOI] [PubMed] [Google Scholar]
  28. Schlesinger L. S., Bellinger-Kawahara C. G., Payne N. R., Horwitz M. A. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990 Apr 1;144(7):2771–2780. [PubMed] [Google Scholar]
  29. Schlesinger L. S., Horwitz M. A. Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J Immunol. 1991 Sep 15;147(6):1983–1994. [PubMed] [Google Scholar]
  30. Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
  31. Sepp-Lorenzino L., Ma Z., Lebwohl D. E., Vinitsky A., Rosen N. Herbimycin A induces the 20 S proteasome- and ubiquitin-dependent degradation of receptor tyrosine kinases. J Biol Chem. 1995 Jul 14;270(28):16580–16587. doi: 10.1074/jbc.270.28.16580. [DOI] [PubMed] [Google Scholar]
  32. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  33. Sung S. S., Nelson R. S., Silverstein S. C. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages. J Cell Biol. 1983 Jan;96(1):160–166. doi: 10.1083/jcb.96.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Thornton B. P., Vetvicka V., Pitman M., Goldman R. C., Ross G. D. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996 Feb 1;156(3):1235–1246. [PubMed] [Google Scholar]
  35. Uings I. J., Thompson N. T., Randall R. W., Spacey G. D., Bonser R. W., Hudson A. T., Garland L. G. Tyrosine phosphorylation is involved in receptor coupling to phospholipase D but not phospholipase C in the human neutrophil. Biochem J. 1992 Feb 1;281(Pt 3):597–600. doi: 10.1042/bj2810597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wright S. D., Silverstein S. C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med. 1983 Dec 1;158(6):2016–2023. doi: 10.1084/jem.158.6.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xie M. S., Jacobs L. S., Dubyak G. R. Regulation of phospholipase D and primary granule secretion by P2-purinergic- and chemotactic peptide-receptor agonists is induced during granulocytic differentiation of HL-60 cells. J Clin Invest. 1991 Jul;88(1):45–54. doi: 10.1172/JCI115303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamamoto K., Johnston R. B., Jr Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages. J Exp Med. 1984 Feb 1;159(2):405–416. doi: 10.1084/jem.159.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Zaffran Y., Escallier J. C., Ruta S., Capo C., Mege J. L. Zymosan-triggered association of tyrosine phosphoproteins and lyn kinase with cytoskeleton in human monocytes. J Immunol. 1995 Apr 1;154(7):3488–3497. [PubMed] [Google Scholar]
  40. Zhou M. J., Lublin D. M., Link D. C., Brown E. J. Distinct tyrosine kinase activation and Triton X-100 insolubility upon Fc gamma RII or Fc gamma RIIIB ligation in human polymorphonuclear leukocytes. Implications for immune complex activation of the respiratory burst. J Biol Chem. 1995 Jun 2;270(22):13553–13560. doi: 10.1074/jbc.270.22.13553. [DOI] [PubMed] [Google Scholar]
  41. Zhu Z., Bao Z., Li J. MacMARCKS mutation blocks macrophage phagocytosis of zymosan. J Biol Chem. 1995 Jul 28;270(30):17652–17655. doi: 10.1074/jbc.270.30.17652. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES