Abstract
CD4+ T cells have been shown to be crucial in the development of experimental autoimmune myasthenia gravis (EAMG). The role of CD8+ T cells in EAMG is less well established. We previously showed that antibody depletion of CD8+ T cells in rats effectively suppresses EAMG. To further study the role and relationship of CD4+ versus CD8+ T cells in induction of EAMG, CD4-/-, CD8-/-, and CD4-8- mutant C57BL/6 mice and the parent CD4+8- wild-type mice were immunized with Torpedo acetylcholine receptor (AChR) plus complete Freund's adjuvant. Clinical EAMG was nearly completely prevented in CD4-8-, CD4-/-, and CD8-/- mice. This was associated with strongly reduced AChR-specific T and B cell responses, and with reduced levels of AChR-reactive interferon gamma (IFN-gamma) and interleukin 4 (IL-4) mRNA-expressing cells in lymphoid organs when compared with CD4+8+ wild-type mice. We conclude that (a) both CD4+ and CD8+ T cells are essential for development of EAMG, and a collaboration between these cell types may be necessary; (b) CD4+ as well as CD8+ T cells secrete IFN-gamma and IL-4, and both cytokines are involved in the development of EAMG; and (c), besides T cells, other immune cells might also be responsible for help of anti- AChR antibody production.
Full Text
The Full Text of this article is available as a PDF (759.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asthana D., Fujii Y., Huston G. E., Lindstrom J. Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol. 1993 Jun;67(3 Pt 1):240–248. doi: 10.1006/clin.1993.1071. [DOI] [PubMed] [Google Scholar]
- Berman P. W., Patrick J. Experimental myasthenia gravis. A murine system. J Exp Med. 1980 Jan 1;151(1):204–223. doi: 10.1084/jem.151.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bix M., Raulet D. Functionally conformed free class I heavy chains exist on the surface of beta 2 microglobulin negative cells. J Exp Med. 1992 Sep 1;176(3):829–834. doi: 10.1084/jem.176.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y., Inobe J., Weiner H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995 Jul 15;155(2):910–916. [PubMed] [Google Scholar]
- Christadoss P., Dauphinee M. J. Immunotherapy for myasthenia gravis: a murine model. J Immunol. 1986 Apr 1;136(7):2437–2440. [PubMed] [Google Scholar]
- Deibler G. E., Martenson R. E., Kies M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2(2):139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
- Derynck R., Jarrett J. A., Chen E. Y., Eaton D. H., Bell J. R., Assoian R. K., Roberts A. B., Sporn M. B., Goeddel D. V. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985 Aug 22;316(6030):701–705. doi: 10.1038/316701a0. [DOI] [PubMed] [Google Scholar]
- Dijkema R., van der Meide P. H., Dubbeld M., Caspers M., Wubben J., Schellekens H. Cloning, expression, and purification of rat IFN-gamma. Methods Enzymol. 1986;119:453–464. doi: 10.1016/0076-6879(86)19065-3. [DOI] [PubMed] [Google Scholar]
- Drachman D. B. Myasthenia gravis. N Engl J Med. 1994 Jun 23;330(25):1797–1810. doi: 10.1056/NEJM199406233302507. [DOI] [PubMed] [Google Scholar]
- Fowell D., Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med. 1993 Mar 1;177(3):627–636. doi: 10.1084/jem.177.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii Y., Lindstrom J. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides. J Immunol. 1988 Mar 15;140(6):1830–1837. [PubMed] [Google Scholar]
- Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
- Glas R., Ohlén C., Höglund P., Kärre K. The CD8+ T cell repertoire in beta 2-microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. J Exp Med. 1994 Feb 1;179(2):661–672. doi: 10.1084/jem.179.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gu D., Wogensen L., Calcutt N. A., Xia C., Zhu S., Merlie J. P., Fox H. S., Lindstrom J., Powell H. C., Sarvetnick N. Myasthenia gravis-like syndrome induced by expression of interferon gamma in the neuromuscular junction. J Exp Med. 1995 Feb 1;181(2):547–557. doi: 10.1084/jem.181.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hohlfeld R., Toyka K. V., Tzartos S. J., Carson W., Conti-Tronconi B. M. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor alpha subunit. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5379–5383. doi: 10.1073/pnas.84.15.5379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol. 1991 Feb 15;146(4):1163–1168. [PubMed] [Google Scholar]
- Kaul R., Shenoy M., Goluszko E., Christadoss P. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J Immunol. 1994 Mar 15;152(6):3152–3157. [PubMed] [Google Scholar]
- Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today. 1995 Aug;16(8):374–379. doi: 10.1016/0167-5699(95)80004-2. [DOI] [PubMed] [Google Scholar]
- Kemeny D. M., Noble A., Holmes B. J., Diaz-Sanchez D. Immune regulation: a new role for the CD8+ T cell. Immunol Today. 1994 Mar;15(3):107–110. doi: 10.1016/0167-5699(94)90152-X. [DOI] [PubMed] [Google Scholar]
- Kinoshita I., Nakamura T., Satoh A., Matsuo H., Seto M., Tomita I., Tsujihata M., Nagataki S. Role of the macrophage in the pathogenesis of experimental autoimmune myasthenia gravis. J Neurol Sci. 1988 Oct;87(1):49–59. doi: 10.1016/0022-510x(88)90053-6. [DOI] [PubMed] [Google Scholar]
- Koh D. R., Fung-Leung W. P., Ho A., Gray D., Acha-Orbea H., Mak T. W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science. 1992 May 22;256(5060):1210–1213. doi: 10.1126/science.256.5060.1210. [DOI] [PubMed] [Google Scholar]
- Kong Y. M., Waldmann H., Cobbold S., Giraldo A. A., Fuller B. E., Simon L. L. Pathogenic mechanisms in murine autoimmune thyroiditis: short- and long-term effects of in vivo depletion of CD4+ and CD8+ cells. Clin Exp Immunol. 1989 Sep;77(3):428–433. [PMC free article] [PubMed] [Google Scholar]
- Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
- Lennon V. A., McCormick D. J., Lambert E. H., Griesmann G. E., Atassi M. Z. Region of peptide 125-147 of acetylcholine receptor alpha subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity, and modulating autoantibodies. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8805–8809. doi: 10.1073/pnas.82.24.8805. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindstrom J., Einarson B., Tzartos S. Production and assay of antibodies to acetylcholine receptors. Methods Enzymol. 1981;74(Pt 100):432–460. doi: 10.1016/0076-6879(81)74031-x. [DOI] [PubMed] [Google Scholar]
- Link H., Olsson O., Sun J., Wang W. Z., Andersson G., Ekre H. P., Brenner T., Abramsky O., Olsson T. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest. 1991 Jun;87(6):2191–2196. doi: 10.1172/JCI115253. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Link J., Söderström M., Ljungdahl A., Höjeberg B., Olsson T., Xu Z., Fredrikson S., Wang Z. Y., Link H. Organ-specific autoantigens induce interferon-gamma and interleukin-4 mRNA expression in mononuclear cells in multiple sclerosis and myasthenia gravis. Neurology. 1994 Apr;44(4):728–734. doi: 10.1212/wnl.44.4.728. [DOI] [PubMed] [Google Scholar]
- Ljunggren H. G., Van Kaer L., Ashton-Rickardt P. G., Tonegawa S., Ploegh H. L. Differential reactivity of residual CD8+ T lymphocytes in TAP1 and beta 2-microglobulin mutant mice. Eur J Immunol. 1995 Jan;25(1):174–178. doi: 10.1002/eji.1830250129. [DOI] [PubMed] [Google Scholar]
- Ma C. G., Zhang G. X., Xiao B. G., Link J., Olsson T., Link H. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroimmunol. 1995 Apr;58(1):51–60. doi: 10.1016/0165-5728(94)00187-s. [DOI] [PubMed] [Google Scholar]
- McKnight A. J., Barclay A. N., Mason D. W. Molecular cloning of rat interleukin 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol. 1991 May;21(5):1187–1194. doi: 10.1002/eji.1830210514. [DOI] [PubMed] [Google Scholar]
- Pummerer C., Berger P., Frühwirth M., Ofner C., Neu N. Cellular infiltrate, major histocompatibility antigen expression and immunopathogenic mechanisms in cardiac myosin-induced myocarditis. Lab Invest. 1991 Nov;65(5):538–547. [PubMed] [Google Scholar]
- Rahemtulla A., Fung-Leung W. P., Schilham M. W., Kündig T. M., Sambhara S. R., Narendran A., Arabian A., Wakeham A., Paige C. J., Zinkernagel R. M. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 1991 Sep 12;353(6340):180–184. doi: 10.1038/353180a0. [DOI] [PubMed] [Google Scholar]
- Rieber E. P., Rank G. CDw60: a marker for human CD8+ T helper cells. J Exp Med. 1994 Apr 1;179(4):1385–1390. doi: 10.1084/jem.179.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
- Schilham M. W., Fung-Leung W. P., Rahemtulla A., Kuendig T., Zhang L., Potter J., Miller R. G., Hengartner H., Mak T. W. Alloreactive cytotoxic T cells can develop and function in mice lacking both CD4 and CD8. Eur J Immunol. 1993 Jun;23(6):1299–1304. doi: 10.1002/eji.1830230617. [DOI] [PubMed] [Google Scholar]
- Seder R. A., Le Gros G. G. The functional role of CD8+ T helper type 2 cells. J Exp Med. 1995 Jan 1;181(1):5–7. doi: 10.1084/jem.181.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shenoy M., Kaul R., Goluszko E., David C., Christadoss P. Effect of MHC class I and CD8 cell deficiency on experimental autoimmune myasthenia gravis pathogenesis. J Immunol. 1994 Dec 1;153(11):5330–5335. [PubMed] [Google Scholar]
- Thivolet C., Bendelac A., Bedossa P., Bach J. F., Carnaud C. CD8+ T cell homing to the pancreas in the nonobese diabetic mouse is CD4+ T cell-dependent. J Immunol. 1991 Jan 1;146(1):85–88. [PubMed] [Google Scholar]
- Waldor M. K., Sriram S., McDevitt H. O., Steinman L. In vivo therapy with monoclonal anti-I-A antibody suppresses immune responses to acetylcholine receptor. Proc Natl Acad Sci U S A. 1983 May;80(9):2713–2717. doi: 10.1073/pnas.80.9.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang Z. Y., Link H., Ljungdahl A., Höjeberg B., Link J., He B., Qiao J., Melms A., Olsson T. Induction of interferon-gamma, interleukin-4, and transforming growth factor-beta in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol. 1994 Sep;157(2):353–368. doi: 10.1006/cimm.1994.1233. [DOI] [PubMed] [Google Scholar]
- Wang Z. Y., Qiao J., Melms A., Link H. T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol. 1993 Dec;152(2):394–404. doi: 10.1006/cimm.1993.1300. [DOI] [PubMed] [Google Scholar]
- Zhang G. X., Ma C. G., Xiao B. G., Bakhiet M., Link H., Olsson T. Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. Eur J Immunol. 1995 May;25(5):1191–1198. doi: 10.1002/eji.1830250509. [DOI] [PubMed] [Google Scholar]
- van der Meide P. H., Dijkema R., Caspers M., Vijverberg K., Schellekens H. Cloning, expression, and purification of rat IFN-alpha 1. Methods Enzymol. 1986;119:441–453. doi: 10.1016/0076-6879(86)19064-1. [DOI] [PubMed] [Google Scholar]
- van der Meide P. H., Dubbeld M., Vijverberg K., Kos T., Schellekens H. The purification and characterization of rat gamma interferon by use of two monoclonal antibodies. J Gen Virol. 1986 Jun;67(Pt 6):1059–1071. doi: 10.1099/0022-1317-67-6-1059. [DOI] [PubMed] [Google Scholar]