Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):349–356. doi: 10.1084/jem.184.2.349

Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis

PMCID: PMC2192725  PMID: 8760788

Abstract

CD4+ T cells have been shown to be crucial in the development of experimental autoimmune myasthenia gravis (EAMG). The role of CD8+ T cells in EAMG is less well established. We previously showed that antibody depletion of CD8+ T cells in rats effectively suppresses EAMG. To further study the role and relationship of CD4+ versus CD8+ T cells in induction of EAMG, CD4-/-, CD8-/-, and CD4-8- mutant C57BL/6 mice and the parent CD4+8- wild-type mice were immunized with Torpedo acetylcholine receptor (AChR) plus complete Freund's adjuvant. Clinical EAMG was nearly completely prevented in CD4-8-, CD4-/-, and CD8-/- mice. This was associated with strongly reduced AChR-specific T and B cell responses, and with reduced levels of AChR-reactive interferon gamma (IFN-gamma) and interleukin 4 (IL-4) mRNA-expressing cells in lymphoid organs when compared with CD4+8+ wild-type mice. We conclude that (a) both CD4+ and CD8+ T cells are essential for development of EAMG, and a collaboration between these cell types may be necessary; (b) CD4+ as well as CD8+ T cells secrete IFN-gamma and IL-4, and both cytokines are involved in the development of EAMG; and (c), besides T cells, other immune cells might also be responsible for help of anti- AChR antibody production.

Full Text

The Full Text of this article is available as a PDF (759.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asthana D., Fujii Y., Huston G. E., Lindstrom J. Regulation of antibody production by helper T cell clones in experimental autoimmune myasthenia gravis is mediated by IL-4 and antigen-specific T cell factors. Clin Immunol Immunopathol. 1993 Jun;67(3 Pt 1):240–248. doi: 10.1006/clin.1993.1071. [DOI] [PubMed] [Google Scholar]
  2. Berman P. W., Patrick J. Experimental myasthenia gravis. A murine system. J Exp Med. 1980 Jan 1;151(1):204–223. doi: 10.1084/jem.151.1.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bix M., Raulet D. Functionally conformed free class I heavy chains exist on the surface of beta 2 microglobulin negative cells. J Exp Med. 1992 Sep 1;176(3):829–834. doi: 10.1084/jem.176.3.829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen Y., Inobe J., Weiner H. L. Induction of oral tolerance to myelin basic protein in CD8-depleted mice: both CD4+ and CD8+ cells mediate active suppression. J Immunol. 1995 Jul 15;155(2):910–916. [PubMed] [Google Scholar]
  5. Christadoss P., Dauphinee M. J. Immunotherapy for myasthenia gravis: a murine model. J Immunol. 1986 Apr 1;136(7):2437–2440. [PubMed] [Google Scholar]
  6. Deibler G. E., Martenson R. E., Kies M. W. Large scale preparation of myelin basic protein from central nervous tissue of several mammalian species. Prep Biochem. 1972;2(2):139–165. doi: 10.1080/00327487208061467. [DOI] [PubMed] [Google Scholar]
  7. Derynck R., Jarrett J. A., Chen E. Y., Eaton D. H., Bell J. R., Assoian R. K., Roberts A. B., Sporn M. B., Goeddel D. V. Human transforming growth factor-beta complementary DNA sequence and expression in normal and transformed cells. Nature. 1985 Aug 22;316(6030):701–705. doi: 10.1038/316701a0. [DOI] [PubMed] [Google Scholar]
  8. Dijkema R., van der Meide P. H., Dubbeld M., Caspers M., Wubben J., Schellekens H. Cloning, expression, and purification of rat IFN-gamma. Methods Enzymol. 1986;119:453–464. doi: 10.1016/0076-6879(86)19065-3. [DOI] [PubMed] [Google Scholar]
  9. Drachman D. B. Myasthenia gravis. N Engl J Med. 1994 Jun 23;330(25):1797–1810. doi: 10.1056/NEJM199406233302507. [DOI] [PubMed] [Google Scholar]
  10. Fowell D., Mason D. Evidence that the T cell repertoire of normal rats contains cells with the potential to cause diabetes. Characterization of the CD4+ T cell subset that inhibits this autoimmune potential. J Exp Med. 1993 Mar 1;177(3):627–636. doi: 10.1084/jem.177.3.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fujii Y., Lindstrom J. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides. J Immunol. 1988 Mar 15;140(6):1830–1837. [PubMed] [Google Scholar]
  12. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  13. Glas R., Ohlén C., Höglund P., Kärre K. The CD8+ T cell repertoire in beta 2-microglobulin-deficient mice is biased towards reactivity against self-major histocompatibility class I. J Exp Med. 1994 Feb 1;179(2):661–672. doi: 10.1084/jem.179.2.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gu D., Wogensen L., Calcutt N. A., Xia C., Zhu S., Merlie J. P., Fox H. S., Lindstrom J., Powell H. C., Sarvetnick N. Myasthenia gravis-like syndrome induced by expression of interferon gamma in the neuromuscular junction. J Exp Med. 1995 Feb 1;181(2):547–557. doi: 10.1084/jem.181.2.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hohlfeld R., Toyka K. V., Tzartos S. J., Carson W., Conti-Tronconi B. M. Human T-helper lymphocytes in myasthenia gravis recognize the nicotinic receptor alpha subunit. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5379–5383. doi: 10.1073/pnas.84.15.5379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Karpus W. J., Swanborg R. H. CD4+ suppressor cells inhibit the function of effector cells of experimental autoimmune encephalomyelitis through a mechanism involving transforming growth factor-beta. J Immunol. 1991 Feb 15;146(4):1163–1168. [PubMed] [Google Scholar]
  17. Kaul R., Shenoy M., Goluszko E., Christadoss P. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J Immunol. 1994 Mar 15;152(6):3152–3157. [PubMed] [Google Scholar]
  18. Kelso A. Th1 and Th2 subsets: paradigms lost? Immunol Today. 1995 Aug;16(8):374–379. doi: 10.1016/0167-5699(95)80004-2. [DOI] [PubMed] [Google Scholar]
  19. Kemeny D. M., Noble A., Holmes B. J., Diaz-Sanchez D. Immune regulation: a new role for the CD8+ T cell. Immunol Today. 1994 Mar;15(3):107–110. doi: 10.1016/0167-5699(94)90152-X. [DOI] [PubMed] [Google Scholar]
  20. Kinoshita I., Nakamura T., Satoh A., Matsuo H., Seto M., Tomita I., Tsujihata M., Nagataki S. Role of the macrophage in the pathogenesis of experimental autoimmune myasthenia gravis. J Neurol Sci. 1988 Oct;87(1):49–59. doi: 10.1016/0022-510x(88)90053-6. [DOI] [PubMed] [Google Scholar]
  21. Koh D. R., Fung-Leung W. P., Ho A., Gray D., Acha-Orbea H., Mak T. W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science. 1992 May 22;256(5060):1210–1213. doi: 10.1126/science.256.5060.1210. [DOI] [PubMed] [Google Scholar]
  22. Kong Y. M., Waldmann H., Cobbold S., Giraldo A. A., Fuller B. E., Simon L. L. Pathogenic mechanisms in murine autoimmune thyroiditis: short- and long-term effects of in vivo depletion of CD4+ and CD8+ cells. Clin Exp Immunol. 1989 Sep;77(3):428–433. [PMC free article] [PubMed] [Google Scholar]
  23. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature. 1985 Apr 11;314(6011):537–539. doi: 10.1038/314537a0. [DOI] [PubMed] [Google Scholar]
  24. Lennon V. A., McCormick D. J., Lambert E. H., Griesmann G. E., Atassi M. Z. Region of peptide 125-147 of acetylcholine receptor alpha subunit is exposed at neuromuscular junction and induces experimental autoimmune myasthenia gravis, T-cell immunity, and modulating autoantibodies. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8805–8809. doi: 10.1073/pnas.82.24.8805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lindstrom J., Einarson B., Tzartos S. Production and assay of antibodies to acetylcholine receptors. Methods Enzymol. 1981;74(Pt 100):432–460. doi: 10.1016/0076-6879(81)74031-x. [DOI] [PubMed] [Google Scholar]
  26. Link H., Olsson O., Sun J., Wang W. Z., Andersson G., Ekre H. P., Brenner T., Abramsky O., Olsson T. Acetylcholine receptor-reactive T and B cells in myasthenia gravis and controls. J Clin Invest. 1991 Jun;87(6):2191–2196. doi: 10.1172/JCI115253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Link J., Söderström M., Ljungdahl A., Höjeberg B., Olsson T., Xu Z., Fredrikson S., Wang Z. Y., Link H. Organ-specific autoantigens induce interferon-gamma and interleukin-4 mRNA expression in mononuclear cells in multiple sclerosis and myasthenia gravis. Neurology. 1994 Apr;44(4):728–734. doi: 10.1212/wnl.44.4.728. [DOI] [PubMed] [Google Scholar]
  28. Ljunggren H. G., Van Kaer L., Ashton-Rickardt P. G., Tonegawa S., Ploegh H. L. Differential reactivity of residual CD8+ T lymphocytes in TAP1 and beta 2-microglobulin mutant mice. Eur J Immunol. 1995 Jan;25(1):174–178. doi: 10.1002/eji.1830250129. [DOI] [PubMed] [Google Scholar]
  29. Ma C. G., Zhang G. X., Xiao B. G., Link J., Olsson T., Link H. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroimmunol. 1995 Apr;58(1):51–60. doi: 10.1016/0165-5728(94)00187-s. [DOI] [PubMed] [Google Scholar]
  30. McKnight A. J., Barclay A. N., Mason D. W. Molecular cloning of rat interleukin 4 cDNA and analysis of the cytokine repertoire of subsets of CD4+ T cells. Eur J Immunol. 1991 May;21(5):1187–1194. doi: 10.1002/eji.1830210514. [DOI] [PubMed] [Google Scholar]
  31. Pummerer C., Berger P., Frühwirth M., Ofner C., Neu N. Cellular infiltrate, major histocompatibility antigen expression and immunopathogenic mechanisms in cardiac myosin-induced myocarditis. Lab Invest. 1991 Nov;65(5):538–547. [PubMed] [Google Scholar]
  32. Rahemtulla A., Fung-Leung W. P., Schilham M. W., Kündig T. M., Sambhara S. R., Narendran A., Arabian A., Wakeham A., Paige C. J., Zinkernagel R. M. Normal development and function of CD8+ cells but markedly decreased helper cell activity in mice lacking CD4. Nature. 1991 Sep 12;353(6340):180–184. doi: 10.1038/353180a0. [DOI] [PubMed] [Google Scholar]
  33. Rieber E. P., Rank G. CDw60: a marker for human CD8+ T helper cells. J Exp Med. 1994 Apr 1;179(4):1385–1390. doi: 10.1084/jem.179.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science. 1991 Oct 11;254(5029):279–282. doi: 10.1126/science.254.5029.279. [DOI] [PubMed] [Google Scholar]
  35. Schilham M. W., Fung-Leung W. P., Rahemtulla A., Kuendig T., Zhang L., Potter J., Miller R. G., Hengartner H., Mak T. W. Alloreactive cytotoxic T cells can develop and function in mice lacking both CD4 and CD8. Eur J Immunol. 1993 Jun;23(6):1299–1304. doi: 10.1002/eji.1830230617. [DOI] [PubMed] [Google Scholar]
  36. Seder R. A., Le Gros G. G. The functional role of CD8+ T helper type 2 cells. J Exp Med. 1995 Jan 1;181(1):5–7. doi: 10.1084/jem.181.1.5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shenoy M., Kaul R., Goluszko E., David C., Christadoss P. Effect of MHC class I and CD8 cell deficiency on experimental autoimmune myasthenia gravis pathogenesis. J Immunol. 1994 Dec 1;153(11):5330–5335. [PubMed] [Google Scholar]
  38. Thivolet C., Bendelac A., Bedossa P., Bach J. F., Carnaud C. CD8+ T cell homing to the pancreas in the nonobese diabetic mouse is CD4+ T cell-dependent. J Immunol. 1991 Jan 1;146(1):85–88. [PubMed] [Google Scholar]
  39. Waldor M. K., Sriram S., McDevitt H. O., Steinman L. In vivo therapy with monoclonal anti-I-A antibody suppresses immune responses to acetylcholine receptor. Proc Natl Acad Sci U S A. 1983 May;80(9):2713–2717. doi: 10.1073/pnas.80.9.2713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Wang Z. Y., Link H., Ljungdahl A., Höjeberg B., Link J., He B., Qiao J., Melms A., Olsson T. Induction of interferon-gamma, interleukin-4, and transforming growth factor-beta in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol. 1994 Sep;157(2):353–368. doi: 10.1006/cimm.1994.1233. [DOI] [PubMed] [Google Scholar]
  41. Wang Z. Y., Qiao J., Melms A., Link H. T cell reactivity to acetylcholine receptor in rats orally tolerized against experimental autoimmune myasthenia gravis. Cell Immunol. 1993 Dec;152(2):394–404. doi: 10.1006/cimm.1993.1300. [DOI] [PubMed] [Google Scholar]
  42. Zhang G. X., Ma C. G., Xiao B. G., Bakhiet M., Link H., Olsson T. Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. Eur J Immunol. 1995 May;25(5):1191–1198. doi: 10.1002/eji.1830250509. [DOI] [PubMed] [Google Scholar]
  43. van der Meide P. H., Dijkema R., Caspers M., Vijverberg K., Schellekens H. Cloning, expression, and purification of rat IFN-alpha 1. Methods Enzymol. 1986;119:441–453. doi: 10.1016/0076-6879(86)19064-1. [DOI] [PubMed] [Google Scholar]
  44. van der Meide P. H., Dubbeld M., Vijverberg K., Kos T., Schellekens H. The purification and characterization of rat gamma interferon by use of two monoclonal antibodies. J Gen Virol. 1986 Jun;67(Pt 6):1059–1071. doi: 10.1099/0022-1317-67-6-1059. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES