Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Aug 1;184(2):441–447. doi: 10.1084/jem.184.2.441

Loss of a unique tumor antigen by cytotoxic T lymphocyte immunoselection from a 3-methylcholanthrene-induced mouse sarcoma reveals secondary unique and shared antigens

PMCID: PMC2192736  PMID: 8760797

Abstract

Most chemically induced tumors of mice express unique antigens that can be recognized by cytotoxic T lymphocytes (CTL) and thereby mediate tumor rejection. The number of different antigens expressed by a single tumor and their interplay during immunization and rejection are largely unexplored. We used CTL clones specific to individual tumor antigens to examine the number and distribution of CTL antigens expressed by cell lines derived from 3-methylcholanthrene-induced sarcomas of (C57BL/6J X SPRET/Ei)F1 mice. Each tumor cell line expressed one or more antigens that were unique, that is, not detected on cell lines from independent sarcomas. Immunoselection against an immunodominant antigen produced both major histocompatibility complex class I antigen and unique tumor antigen loss variants. Immunization of mice with antigen-negative immunoselected variants resulted in CTL that recognized additional antigens that were also expressed by the progenitor tumor. Some CTL recognized additional unique tumor antigen(s); other CTL recognized a shared antigen expressed not only by the immunizing cell line, but also by independent sarcoma cell lines and untransformed myoblastoid cell lines. CTL that recognized the shared antigen were also recovered from mice immunized in vivo with an untransformed myoblastoid cell line. These findings support a model of immunodominance among chemically induced tumor antigens in which shared antigens are masked by unique immunodominant antigens.

Full Text

The Full Text of this article is available as a PDF (702.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barth R. J., Jr, Bock S. N., Mulé J. J., Rosenberg S. A. Unique murine tumor-associated antigens identified by tumor infiltrating lymphocytes. J Immunol. 1990 Feb 15;144(4):1531–1537. [PubMed] [Google Scholar]
  2. Basombrío M. A. Search for common antigenicities among twenty-five sarcomas induced by methylcholanthrene. Cancer Res. 1970 Oct;30(10):2458–2462. [PubMed] [Google Scholar]
  3. Boon T., Cerottini J. C., Van den Eynde B., van der Bruggen P., Van Pel A. Tumor antigens recognized by T lymphocytes. Annu Rev Immunol. 1994;12:337–365. doi: 10.1146/annurev.iy.12.040194.002005. [DOI] [PubMed] [Google Scholar]
  4. Chou T., Shu S. Cellular interactions and the role of interleukin 2 in the expression and induction of immunity against a syngeneic murine sarcoma. J Immunol. 1987 Sep 15;139(6):2103–2109. [PubMed] [Google Scholar]
  5. Dudley M. E., Sundberg J. P., Roopenian D. C. Motif-primed polymerase chain reaction-based allelotype of sarcomas induced by 3-methylcholanthrene in interspecific hybrid mice. Oncogene. 1995 Aug 3;11(3):517–524. [PubMed] [Google Scholar]
  6. Dye E. S., North R. J., Mills C. D. Mechanisms of anti-tumor action of Corynebacterium parvum. I. Potentiated tumor-specific immunity and its therapeutic limitations. J Exp Med. 1981 Sep 1;154(3):609–620. doi: 10.1084/jem.154.3.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fassanito M. A., Loftus D., De Leo R. M., Law L. W., Appella E., De Leo A. B. Characterization of cloned class I MHC-restricted, CD8+ anti-Meth A cytotoxic T-lymphocytes: recognition of an epitope derived from the Meth A gp110 tumor rejection antigen. Cancer Res. 1994 Aug 15;54(16):4424–4429. [PubMed] [Google Scholar]
  8. KLEIN G., SJOGREN H. O., KLEIN E., HELLSTROM K. E. Demonstration of resistance against methylcholanthrene-induced sarcomas in the primary autochthonous host. Cancer Res. 1960 Dec;20:1561–1572. [PubMed] [Google Scholar]
  9. Kawakami Y., Eliyahu S., Delgado C. H., Robbins P. F., Sakaguchi K., Appella E., Yannelli J. R., Adema G. J., Miki T., Rosenberg S. A. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6458–6462. doi: 10.1073/pnas.91.14.6458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kitajima T., Iwashiro M., Kuribayashi K., Imamura S. Immunological characterization of tumor-rejection antigens on ultraviolet-light-induced tumors originating in the CB6F1 mouse. Cancer Immunol Immunother. 1994 Jun;38(6):372–378. doi: 10.1007/BF01517206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kono K., Petersson M., Ciupitu A. M., Wen T., Klein G., Kiessling R. Methylcholanthrene-induced mouse sarcomas express individually distinct major histocompatibility complex class I-associated peptides recognized by specific CD8+ T-cell lines. Cancer Res. 1995 Dec 1;55(23):5648–5655. [PubMed] [Google Scholar]
  12. Lehmann F., Marchand M., Hainaut P., Pouillart P., Sastre X., Ikeda H., Boon T., Coulie P. G. Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol. 1995 Feb;25(2):340–347. doi: 10.1002/eji.1830250206. [DOI] [PubMed] [Google Scholar]
  13. Lill N. L., Tevethia M. J., Hendrickson W. G., Tevethia S. S. Cytotoxic T lymphocytes (CTL) against a transforming gene product select for transformed cells with point mutations within sequences encoding CTL recognition epitopes. J Exp Med. 1992 Aug 1;176(2):449–457. doi: 10.1084/jem.176.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maryanski J. L., Boon T. Immunogenic variants obtained by mutagenesis of mouse mastocytoma P815. IV. Analysis of variant-specific antigens by selection of antigen-loss variants with cytolytic T cell clones. Eur J Immunol. 1982 May;12(5):406–412. doi: 10.1002/eji.1830120509. [DOI] [PubMed] [Google Scholar]
  15. PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
  16. Ramarathinam L., Sarma S., Maric M., Zhao M., Yang G., Chen L., Liu Y. Multiple lineages of tumors express a common tumor antigen, P1A, but they are not cross-protected. J Immunol. 1995 Dec 1;155(11):5323–5329. [PubMed] [Google Scholar]
  17. Restifo N. P., Kawakami Y., Marincola F., Shamamian P., Taggarse A., Esquivel F., Rosenberg S. A. Molecular mechanisms used by tumors to escape immune recognition: immunogenetherapy and the cell biology of major histocompatibility complex class I. J Immunother Emphasis Tumor Immunol. 1993 Oct;14(3):182–190. doi: 10.1097/00002371-199310000-00004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Robbins P. F., el-Gamil M., Kawakami Y., Stevens E., Yannelli J. R., Rosenberg S. A. Recognition of tyrosinase by tumor-infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res. 1994 Jun 15;54(12):3124–3126. [PubMed] [Google Scholar]
  19. Roopenian D. C., Orosz C. G., Bach F. H. Responses against single minor histocompatibility antigens. II. Analysis of cloned helper T cells. J Immunol. 1984 Mar;132(3):1080–1084. [PubMed] [Google Scholar]
  20. Seung S., Urban J. L., Schreiber H. A tumor escape variant that has lost one major histocompatibility complex class I restriction element induces specific CD8+ T cells to an antigen that no longer serves as a target. J Exp Med. 1993 Sep 1;178(3):933–940. doi: 10.1084/jem.178.3.933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shu S. Y., Chou T., Rosenberg S. A. Generation from tumor-bearing mice of lymphocytes with in vivo therapeutic efficacy. J Immunol. 1987 Jul 1;139(1):295–304. [PubMed] [Google Scholar]
  22. Urban J. L., Kripke M. L., Schreiber H. Stepwise immunologic selection of antigenic variants during tumor growth. J Immunol. 1986 Nov 1;137(9):3036–3041. [PubMed] [Google Scholar]
  23. Urban J. L., Schreiber H. Tumor antigens. Annu Rev Immunol. 1992;10:617–644. doi: 10.1146/annurev.iy.10.040192.003153. [DOI] [PubMed] [Google Scholar]
  24. Wortzel R. D., Philipps C., Schreiber H. Multiple tumour-specific antigens expressed on a single tumour cell. Nature. 1983 Jul 14;304(5922):165–167. doi: 10.1038/304165a0. [DOI] [PubMed] [Google Scholar]
  25. Zuberi A. R., Dudley M. E., Christianson G. J., Roopenian D. C. Gene mapping in a murine cell line by immunoselection with cytotoxic T lymphocytes. Genomics. 1994 Jan 15;19(2):273–279. doi: 10.1006/geno.1994.1058. [DOI] [PubMed] [Google Scholar]
  26. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES