Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Oct 1;184(4):1555–1560. doi: 10.1084/jem.184.4.1555

Gene vaccination with naked plasmid DNA: mechanism of CTL priming

PMCID: PMC2192808  PMID: 8879229

Abstract

The injection of naked plasmid DNA directly into the muscle cells of mice has been shown to induce potent humoral and cellular immune responses. The generation of a cytotoxic T lymphocyte (CTL) response after plasmid DNA injection may involve the presentation of the expressed antigen in the context of the injected myocytes' endogenous major histocompatibility (MHC)-encoded class I molecules or may use the MHC molecules of bone marrow-derived antigen presenting cells (APC) which are capable of providing co-stimulation as well. To resolve which cell type provides the specific restricting element for this method of vaccination we generated parent-->F1 bone marrow chimeras in which H- 2bxd recipient mice received bone marrow that expressed only H-2b or H- 2d MHC molecules. These mice were injected intramuscularly with naked plasmid DNA that encoded the nucleoprotein from the A/PR/8/34 influenza strain, which as a single antigen has epitopes for both H-2Db and H- 2Kd. The resulting CTL responses were restricted to the MHC haplotype of the bone marrow alone and not to the second haplotype expressed by the recipient's myocytes. The role of somatic tissues that express protein from injected plasmids may be to serve as a reservoir for that antigen which is then transferred to the APC. Consequently, our data show that the mechanism of priming in this novel method for vaccination uses the MHC from bone marrow-derived APC, which are efficient at providing all of the necessary signals for priming the T cell.

Full Text

The Full Text of this article is available as a PDF (572.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austyn J. M., Hankins D. F., Larsen C. P., Morris P. J., Rao A. S., Roake J. A. Isolation and characterization of dendritic cells from mouse heart and kidney. J Immunol. 1994 Mar 1;152(5):2401–2410. [PubMed] [Google Scholar]
  2. Bevan M. J. Cross-priming for a secondary cytotoxic response to minor H antigens with H-2 congenic cells which do not cross-react in the cytotoxic assay. J Exp Med. 1976 May 1;143(5):1283–1288. doi: 10.1084/jem.143.5.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Böhm W., Schirmbeck R., Elbe A., Melber K., Diminky D., Kraal G., van Rooijen N., Barenholz Y., Reimann J. Exogenous hepatitis B surface antigen particles processed by dendritic cells or macrophages prime murine MHC class I-restricted cytotoxic T lymphocytes in vivo. J Immunol. 1995 Oct 1;155(7):3313–3321. [PubMed] [Google Scholar]
  4. Carbone F. R., Bevan M. J. Class I-restricted processing and presentation of exogenous cell-associated antigen in vivo. J Exp Med. 1990 Feb 1;171(2):377–387. doi: 10.1084/jem.171.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis H. L., Schirmbeck R., Reimann J., Whalen R. G. DNA-mediated immunization in mice induces a potent MHC class I-restricted cytotoxic T lymphocyte response to the hepatitis B envelope protein. Hum Gene Ther. 1995 Nov;6(11):1447–1456. doi: 10.1089/hum.1995.6.11-1447. [DOI] [PubMed] [Google Scholar]
  6. Falk K., Rötzschke O., Stevanović S., Jung G., Rammensee H. G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature. 1991 May 23;351(6324):290–296. doi: 10.1038/351290a0. [DOI] [PubMed] [Google Scholar]
  7. Fink P. J., Bevan M. J. H-2 antigens of the thymus determine lymphocyte specificity. J Exp Med. 1978 Sep 1;148(3):766–775. doi: 10.1084/jem.148.3.766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fynan E. F., Webster R. G., Fuller D. H., Haynes J. R., Santoro J. C., Robinson H. L. DNA vaccines: protective immunizations by parenteral, mucosal, and gene-gun inoculations. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11478–11482. doi: 10.1073/pnas.90.24.11478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harding C. V., Song R., Griffin J., France J., Wick M. J., Pfeifer J. D., Geuze H. J. Processing of bacterial antigens for presentation to class I and II MHC-restricted T lymphocytes. Infect Agents Dis. 1995 Mar;4(1):1–12. [PubMed] [Google Scholar]
  10. Harding C. V., Song R. Phagocytic processing of exogenous particulate antigens by macrophages for presentation by class I MHC molecules. J Immunol. 1994 Dec 1;153(11):4925–4933. [PubMed] [Google Scholar]
  11. Hohlfeld R., Engel A. G. The immunobiology of muscle. Immunol Today. 1994 Jun;15(6):269–274. doi: 10.1016/0167-5699(94)90006-X. [DOI] [PubMed] [Google Scholar]
  12. Huang A. Y., Bruce A. T., Pardoll D. M., Levitsky H. I. In vivo cross-priming of MHC class I-restricted antigens requires the TAP transporter. Immunity. 1996 Apr;4(4):349–355. doi: 10.1016/s1074-7613(00)80248-4. [DOI] [PubMed] [Google Scholar]
  13. Huang A. Y., Golumbek P., Ahmadzadeh M., Jaffee E., Pardoll D., Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994 May 13;264(5161):961–965. doi: 10.1126/science.7513904. [DOI] [PubMed] [Google Scholar]
  14. Jenkins M. K., Schwartz R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987 Feb 1;165(2):302–319. doi: 10.1084/jem.165.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kovacsovics-Bankowski M., Rock K. L. A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science. 1995 Jan 13;267(5195):243–246. doi: 10.1126/science.7809629. [DOI] [PubMed] [Google Scholar]
  16. Kündig T. M., Bachmann M. F., DiPaolo C., Simard J. J., Battegay M., Lother H., Gessner A., Kühlcke K., Ohashi P. S., Hengartner H. Fibroblasts as efficient antigen-presenting cells in lymphoid organs. Science. 1995 Jun 2;268(5215):1343–1347. doi: 10.1126/science.7761853. [DOI] [PubMed] [Google Scholar]
  17. Lamb J. R., Skidmore B. J., Green N., Chiller J. M., Feldmann M. Induction of tolerance in influenza virus-immune T lymphocyte clones with synthetic peptides of influenza hemagglutinin. J Exp Med. 1983 May 1;157(5):1434–1447. doi: 10.1084/jem.157.5.1434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Manickan E., Rouse R. J., Yu Z., Wire W. S., Rouse B. T. Genetic immunization against herpes simplex virus. Protection is mediated by CD4+ T lymphocytes. J Immunol. 1995 Jul 1;155(1):259–265. [PubMed] [Google Scholar]
  19. Martinez-Kinader B., Lipford G. B., Wagner H., Heeg K. Sensitization of MHC class I-restricted T cells to exogenous proteins: evidence for an alternative class I-restricted antigen presentation pathway. Immunology. 1995 Oct;86(2):287–295. [PMC free article] [PubMed] [Google Scholar]
  20. Monaco J. J., Cho S., Attaya M. Transport protein genes in the murine MHC: possible implications for antigen processing. Science. 1990 Dec 21;250(4988):1723–1726. doi: 10.1126/science.2270487. [DOI] [PubMed] [Google Scholar]
  21. Mueller D. L., Jenkins M. K., Schwartz R. H. Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol. 1989;7:445–480. doi: 10.1146/annurev.iy.07.040189.002305. [DOI] [PubMed] [Google Scholar]
  22. Neefjes J. J., Ploegh H. L. Intracellular transport of MHC class II molecules. Immunol Today. 1992 May;13(5):179–184. doi: 10.1016/0167-5699(92)90123-O. [DOI] [PubMed] [Google Scholar]
  23. Pardoll D. M., Beckerleg A. M. Exposing the immunology of naked DNA vaccines. Immunity. 1995 Aug;3(2):165–169. doi: 10.1016/1074-7613(95)90085-3. [DOI] [PubMed] [Google Scholar]
  24. Pfeifer J. D., Wick M. J., Roberts R. L., Findlay K., Normark S. J., Harding C. V. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature. 1993 Jan 28;361(6410):359–362. doi: 10.1038/361359a0. [DOI] [PubMed] [Google Scholar]
  25. Quill H., Schwartz R. H. Stimulation of normal inducer T cell clones with antigen presented by purified Ia molecules in planar lipid membranes: specific induction of a long-lived state of proliferative nonresponsiveness. J Immunol. 1987 Jun 1;138(11):3704–3712. [PubMed] [Google Scholar]
  26. Raz E., Carson D. A., Parker S. E., Parr T. B., Abai A. M., Aichinger G., Gromkowski S. H., Singh M., Lew D., Yankauckas M. A. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9519–9523. doi: 10.1073/pnas.91.20.9519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raz E., Tighe H., Sato Y., Corr M., Dudler J. A., Roman M., Swain S. L., Spiegelberg H. L., Carson D. A. Preferential induction of a Th1 immune response and inhibition of specific IgE antibody formation by plasmid DNA immunization. Proc Natl Acad Sci U S A. 1996 May 14;93(10):5141–5145. doi: 10.1073/pnas.93.10.5141. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Reis e Sousa C., Germain R. N. Major histocompatibility complex class I presentation of peptides derived from soluble exogenous antigen by a subset of cells engaged in phagocytosis. J Exp Med. 1995 Sep 1;182(3):841–851. doi: 10.1084/jem.182.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rock K. L. A new foreign policy: MHC class I molecules monitor the outside world. Immunol Today. 1996 Mar;17(3):131–137. doi: 10.1016/0167-5699(96)80605-0. [DOI] [PubMed] [Google Scholar]
  30. Schirmbeck R., Melber K., Reimann J. Hepatitis B virus small surface antigen particles are processed in a novel endosomal pathway for major histocompatibility complex class I-restricted epitope presentation. Eur J Immunol. 1995 Apr;25(4):1063–1070. doi: 10.1002/eji.1830250431. [DOI] [PubMed] [Google Scholar]
  31. Staerz U. D., Karasuyama H., Garner A. M. Cytotoxic T lymphocytes against a soluble protein. Nature. 1987 Oct 1;329(6138):449–451. doi: 10.1038/329449a0. [DOI] [PubMed] [Google Scholar]
  32. Suto R., Srivastava P. K. A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science. 1995 Sep 15;269(5230):1585–1588. doi: 10.1126/science.7545313. [DOI] [PubMed] [Google Scholar]
  33. Townsend A., Trowsdale J. The transporters associated with antigen presentation. Semin Cell Biol. 1993 Feb;4(1):53–61. doi: 10.1006/scel.1993.1007. [DOI] [PubMed] [Google Scholar]
  34. Ulmer J. B., Donnelly J. J., Parker S. E., Rhodes G. H., Felgner P. L., Dwarki V. J., Gromkowski S. H., Deck R. R., DeWitt C. M., Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993 Mar 19;259(5102):1745–1749. doi: 10.1126/science.8456302. [DOI] [PubMed] [Google Scholar]
  35. Watanabe A., Raz E., Kohsaka H., Tighe H., Baird S. M., Kipps T. J., Carson D. A. Induction of antibodies to a kappa V region by gene immunization. J Immunol. 1993 Sep 1;151(5):2871–2876. [PubMed] [Google Scholar]
  36. Whalen R. G., Leclerc C., Dériaud E., Schirmbeck R., Reimann J., Davis H. L. DNA-mediated immunization to the hepatitis B surface antigen. Activation and entrainment of the immune response. Ann N Y Acad Sci. 1995 Nov 27;772:64–76. doi: 10.1111/j.1749-6632.1995.tb44732.x. [DOI] [PubMed] [Google Scholar]
  37. Wolff J. A., Malone R. W., Williams P., Chong W., Acsadi G., Jani A., Felgner P. L. Direct gene transfer into mouse muscle in vivo. Science. 1990 Mar 23;247(4949 Pt 1):1465–1468. doi: 10.1126/science.1690918. [DOI] [PubMed] [Google Scholar]
  38. Xiang Z., Ertl H. C. Manipulation of the immune response to a plasmid-encoded viral antigen by coinoculation with plasmids expressing cytokines. Immunity. 1995 Feb;2(2):129–135. doi: 10.1016/s1074-7613(95)80001-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES