Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Oct 1;184(4):1225–1232. doi: 10.1084/jem.184.4.1225

Interaction between complement proteins C5b-7 and erythrocyte membrane sialic acid

PMCID: PMC2192816  PMID: 8879193

Abstract

The initial phase of membrane attack by complement is the interaction between C5b6, C7, and the cell membrane that leads to the insertion of C5b-7. Here we investigate the role of sialic acid residues in the assembly of C5b-7 intermediates on erythrocyte cell membranes. We find that C5b6 binds to glycophorin, whereas C5 or C6 does not bind, and desialylation of the glycophorin abolishes C5b6 binding. Complement lysis is inhibited by either masking glycophorin sialic acid with F(ab) fragments of an mAb, or by removal of the sialylated region of glycophorin by mild trypsinization. Gangliosides inhibit C5b-7 deposition when added to the aqueous phase. Asialogangliosides and synthetic gangliosides lacking the carboxylic acid residue have no inhibitory activity. We conclude that C5b6 binds to sialylated molecules on the erythrocyte surface. We propose a new model of membrane attack in which C5b6 initially binds to membranes via ionic forces. C7 then binds to C5b6, disrupting the ionic interaction and leading to the exposure of hydrophobic domains. Sialic acid is known to inhibit complement activation. Thus, these findings reveal a paradoxical role for sialic acid in complement attack; the presence of sialic acid inhibits the generation of C5b6, but once the membrane attack pathway is initiated, sialic acid enhances complement lysis.

Full Text

The Full Text of this article is available as a PDF (831.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akami T., Arakawa K., Okamoto M., Akioka K., Fujiwara I., Nakai I., Mitsuo M., Sawada R., Naruto M., Oka T. Enhancement of the complement regulatory function of CD59 by site-directed mutagenesis at the N-glycosylation site. Transplant Proc. 1994 Jun;26(3):1256–1258. [PubMed] [Google Scholar]
  2. Baker P. J., Lint T. F., McLeod B. C., Behrends C. L., Gewurz H. Studies on the inhibition of C56-induced lysis (reactive lysis). VI. Modulation of C56-induced lysis polyanions and polycations. J Immunol. 1975 Feb;114(2 Pt 1):554–558. [PubMed] [Google Scholar]
  3. DiScipio R. G., Chakravarti D. N., Muller-Eberhard H. J., Fey G. H. The structure of human complement component C7 and the C5b-7 complex. J Biol Chem. 1988 Jan 5;263(1):549–560. [PubMed] [Google Scholar]
  4. Esser A. F. The membrane attack complex of complement. Assembly, structure and cytotoxic activity. Toxicology. 1994 Feb 28;87(1-3):229–247. doi: 10.1016/0300-483x(94)90253-4. [DOI] [PubMed] [Google Scholar]
  5. Goldlust M. B., Shin H. S., Hammer C. H., Mayer M. M. Studies of complement complex C5b,6 eluted from--EAC-6: reaction of C5b,6 with EAC4b,3b and evidence on the role of C2a and C3b in the activation of C5. J Immunol. 1974 Sep;113(3):998–1007. [PubMed] [Google Scholar]
  6. Haefliger J. A., Tschopp J., Vial N., Jenne D. E. Complete primary structure and functional characterization of the sixth component of the human complement system. Identification of the C5b-binding domain in complement C6. J Biol Chem. 1989 Oct 25;264(30):18041–18051. [PubMed] [Google Scholar]
  7. Hammer C. H., Abramovitz A. S., Mayer M. M. A new activity of complement component C3: cell-bound C3b potentiates lysis of erythrocytes by C5b,6 and terminal components. J Immunol. 1976 Sep;117(3):830–834. [PubMed] [Google Scholar]
  8. Hammer C. H., Nicholson A., Mayer M. M. On the mechanism of cytolysis by complement: evidence on insertion of C5b and C7 subunits of the C5b,6,7 complex into phospholipid bilayers of erythrocyte membranes. Proc Natl Acad Sci U S A. 1975 Dec;72(12):5076–5080. doi: 10.1073/pnas.72.12.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hammer C. H., Shin M. L., Abramovitz A. S., Mayer M. M. On the mechanism of cell membrane damage by complement: evidence on insertion of polypeptide chains from C8 and C9 into the lipid bilayer of erythrocytes. J Immunol. 1977 Jul;119(1):1–8. [PubMed] [Google Scholar]
  10. Hasegawa A., Adachi K., Yoshida M., Kiso M. Synthesis of a ganglioside GM3 analog containing a hydroxymethyl group in place of the carboxyl group in the N-acetylneuraminic acid unit. Biosci Biotechnol Biochem. 1992 Mar;56(3):445–447. doi: 10.1271/bbb.56.445. [DOI] [PubMed] [Google Scholar]
  11. Hasegawa A., Adachi K., Yoshida M., Kiso M. Synthesis of a series of ganglioside GM3 analogs containing a deoxy-N-acetylneuraminic acid residue. Carbohydr Res. 1992 Jun 16;230(2):273–288. doi: 10.1016/0008-6215(92)84038-t. [DOI] [PubMed] [Google Scholar]
  12. Hasegawa A., Ogawa M., Kiso M. Synthesis of a ganglioside GM3 position isomer, N-acetylneuraminosyl-alpha (2----6)-lactosyl-beta(1----1)-ceramide. Biosci Biotechnol Biochem. 1992 Mar;56(3):535–536. doi: 10.1271/bbb.56.535. [DOI] [PubMed] [Google Scholar]
  13. Holt G. D., Krivan H. C., Gasic G. J., Ginsburg V. Antistasin, an inhibitor of coagulation and metastasis, binds to sulfatide (Gal(3-SO4) beta 1-1Cer) and has a sequence homology with other proteins that bind sulfated glycoconjugates. J Biol Chem. 1989 Jul 25;264(21):12138–12140. [PubMed] [Google Scholar]
  14. Holt G. D., Pangburn M. K., Ginsburg V. Properdin binds to sulfatide [Gal(3-SO4)beta 1-1 Cer] and has a sequence homology with other proteins that bind sulfated glycoconjugates. J Biol Chem. 1990 Feb 15;265(5):2852–2855. [PubMed] [Google Scholar]
  15. Hu V. W., Esser A. F., Podack E. R., Wisnieski B. J. The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol. 1981 Jul;127(1):380–386. [PubMed] [Google Scholar]
  16. Iida K., Whitlow M. B., Nussenzweig V. Membrane vesiculation protects erythrocytes from destruction by complement. J Immunol. 1991 Oct 15;147(8):2638–2642. [PubMed] [Google Scholar]
  17. Jenne D. E., Tschopp J. Clusterin: the intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci. 1992 Apr;17(4):154–159. doi: 10.1016/0968-0004(92)90325-4. [DOI] [PubMed] [Google Scholar]
  18. Magee J. C., Platt J. L. Xenograft rejection--molecular mechanisms and therapeutic implications. Ther Immunol. 1994 Jan;1(1):45–58. [PubMed] [Google Scholar]
  19. Mayer M. M. Complement, past and present. Harvey Lect. 1978;72:139–193. [PubMed] [Google Scholar]
  20. Michalek M. T., Mold C., Bremer E. G. Inhibition of the alternative pathway of human complement by structural analogues of sialic acid. J Immunol. 1988 Mar 1;140(5):1588–1594. [PubMed] [Google Scholar]
  21. Murase T., Ishida H., Kiso M., Hasegawa A. A facile, regio- and stereo-selective synthesis of ganglioside GM3. Carbohydr Res. 1989 Jun 1;188:71–80. doi: 10.1016/0008-6215(89)84060-1. [DOI] [PubMed] [Google Scholar]
  22. Ninomiya H., Stewart B. H., Rollins S. A., Zhao J., Bothwell A. L., Sims P. J. Contribution of the N-linked carbohydrate of erythrocyte antigen CD59 to its complement-inhibitory activity. J Biol Chem. 1992 Apr 25;267(12):8404–8410. [PubMed] [Google Scholar]
  23. Ollert M. W., David K., Bredehorst R., Vogel C. W. Classical complement pathway activation on nucleated cells. Role of factor H in the control of deposited C3b. J Immunol. 1995 Nov 15;155(10):4955–4962. [PubMed] [Google Scholar]
  24. Pangburn M. K., Atkinson M. A., Meri S. Localization of the heparin-binding site on complement factor H. J Biol Chem. 1991 Sep 5;266(25):16847–16853. [PubMed] [Google Scholar]
  25. Perkins M. Inhibitory effects of erythrocyte membrane proteins on the in vitro invasion of the human malarial parasite (Plasmodium falciparum) into its host cell. J Cell Biol. 1981 Sep;90(3):563–567. doi: 10.1083/jcb.90.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Podack E. R., Stoffel W., Esser A. F., Müller-Eberhard H. J. Membrane attack complex of complement: distribution of subunits between the hydrocarbon phase of target membranes and water. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4544–4548. doi: 10.1073/pnas.78.7.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Preissner K. T. The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. Blut. 1989 Nov;59(5):419–431. doi: 10.1007/BF00349063. [DOI] [PubMed] [Google Scholar]
  28. Sahu A., Pangburn M. K. Identification of multiple sites of interaction between heparin and the complement system. Mol Immunol. 1993 May;30(7):679–684. doi: 10.1016/0161-5890(93)90079-q. [DOI] [PubMed] [Google Scholar]
  29. Silversmith R. E., Nelsestuen G. L. Interaction of complement proteins C5b-6 and C5b-7 with phospholipid vesicles: effects of phospholipid structural features. Biochemistry. 1986 Nov 18;25(23):7717–7725. doi: 10.1021/bi00371a065. [DOI] [PubMed] [Google Scholar]
  30. Smith K. F., Nolan K. F., Reid K. B., Perkins S. J. Neutron and X-ray scattering studies on the human complement protein properdin provide an analysis of the thrombospondin repeat. Biochemistry. 1991 Aug 13;30(32):8000–8008. doi: 10.1021/bi00246a018. [DOI] [PubMed] [Google Scholar]
  31. Su S., Sanadi A. R., Ifon E., Davidson E. A. A monoclonal antibody capable of blocking the binding of Pf200 (MSA-1) to human erythrocytes and inhibiting the invasion of Plasmodium falciparum merozoites into human erythrocytes. J Immunol. 1993 Aug 15;151(4):2309–2317. [PubMed] [Google Scholar]
  32. Tomita A., Radike E. L., Parker C. J. Isolation of erythrocyte membrane inhibitor of reactive lysis type II. Identification as glycophorin A. J Immunol. 1993 Sep 15;151(6):3308–3323. [PubMed] [Google Scholar]
  33. Tschopp J., Masson D. Inhibition of the lytic activity of perforin (cytolysin) and of late complement components by proteoglycans. Mol Immunol. 1987 Sep;24(9):907–913. doi: 10.1016/0161-5890(87)90002-2. [DOI] [PubMed] [Google Scholar]
  34. Varki A. Selectin ligands. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7390–7397. doi: 10.1073/pnas.91.16.7390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  36. Yamamoto K. I., Gewurz G. The complex of C5b and C6: isolation, characterization, and identification of a modified form of C5b consisting of three polypeptide chains. J Immunol. 1978 Jun;120(6):2008–2015. [PubMed] [Google Scholar]
  37. Yoshida M., Ishida H., Kiso M., Hasegawa A. Synthesis of N-acetyl-4,8-dideoxyneuraminic acid-containing ganglioside GM3. Carbohydr Res. 1996 Jan 11;280(2):331–338. doi: 10.1016/0008-6215(95)00327-4. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES