Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Nov 1;184(5):1781–1790. doi: 10.1084/jem.184.5.1781

Decreased tumor surveillance in perforin-deficient mice

PMCID: PMC2192859  PMID: 8920866

Abstract

Immune surveillance against tumors usually depends on T cell recognition of tumor antigens presented by major histocompatibility complex (MHC) molecules, whereas MHC class I- tumors may be controlled by natural killer (NK) cells. Perforin-dependent cytotoxicity is a major effector function of CD8+ MHC class I-restricted T cells and of NK cells. Here, we used perforin-deficient C57BL/6 (PKO) mice to study involvement of perforin and Fas ligand in tumor surveillance in vivo. We induced tumors in PKO and normal C57BL/6 mice by (a) injection of different syngeneic tumor cell lines of different tissue origin in naive and primed mice; (b) administration of the chemical carcinogens methylcholanthrene (MCA) or 12-O-tetradecanoylphorbol-13-acetate (TPA) plus 7,12-dimethylbenzanthracene (DMBA), or (c) by injection of acutely oncogenic Moloney sarcoma virus. The first set of models analyzes the defense against a tumor load given at once, whereas the last two sets give information on immune defense against tumors at the very moment of their generation. Most of the tumor cell lines tested were eliminated 10-100-fold better by C57BL/6 mice in an unprimed situation; after priming, the differences were more pronounced. Lymphoma cells transfected with Fas were controlled 10-fold better by PKO and C57BL/6 mice when compared to untransfected control cells, indicating some role for FasL in tumor control. MCA-induced tumors arose more rapidly and with a higher incidence in PKO mice compared to C57BL/6 or CD8- deficient mice. DMBA+TPA-induced skin papillomas arose with similar high incidence and comparable kinetics in both mouse strains. C57BL/6 and PKO mice have a similar incidence of Moloney murine sarcoma and leukemia virus-induced sarcomas, but tumors are larger and regression is retarded in PKO mice. Thus, perforin-dependent cytotoxicity is not only a crucial mechanism of both cytotoxic T lymphocyte- and NK- dependent resistance to injected tumor cell lines, but also operates during viral and chemical carcinogenesis in vivo. Experiments addressing the role of Fas-dependent cytotoxicity by studying resistance to tumor cell lines that were stably transfected with Fas neither provided evidence for a major role of Fas nor excluded a minor contribution of Fas in tumor surveillance.

Full Text

The Full Text of this article is available as a PDF (742.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernards R., Schrier P. I., Houweling A., Bos J. L., van der Eb A. J., Zijlstra M., Melief C. J. Tumorigenicity of cells transformed by adenovirus type 12 by evasion of T-cell immunity. 1983 Oct 27-Nov 2Nature. 305(5937):776–779. doi: 10.1038/305776a0. [DOI] [PubMed] [Google Scholar]
  2. Braun M. Y., Lowin B., French L., Acha-Orbea H., Tschopp J. Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med. 1996 Feb 1;183(2):657–661. doi: 10.1084/jem.183.2.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bubbers J. E., Chen S., Lilly F. Nonrandom inclusion of H-2K and H-2D antigens in Friend virus particles from mice of various strains. J Exp Med. 1978 Feb 1;147(2):340–351. doi: 10.1084/jem.147.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bubbers J. E., Lilly F. Selective incorporation of H-2 antigenic determinants into Friend virus particles. Nature. 1977 Mar 31;266(5601):458–459. doi: 10.1038/266458a0. [DOI] [PubMed] [Google Scholar]
  5. Chen L., Ashe S., Brady W. A., Hellström I., Hellström K. E., Ledbetter J. A., McGowan P., Linsley P. S. Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell. 1992 Dec 24;71(7):1093–1102. doi: 10.1016/s0092-8674(05)80059-5. [DOI] [PubMed] [Google Scholar]
  6. Cobbold S. P., Jayasuriya A., Nash A., Prospero T. D., Waldmann H. Therapy with monoclonal antibodies by elimination of T-cell subsets in vivo. Nature. 1984 Dec 6;312(5994):548–551. doi: 10.1038/312548a0. [DOI] [PubMed] [Google Scholar]
  7. Doherty P. C., Biddison W. E., Bennink J. R., Knowles B. B. Cytotoxic T-cell responses in mice infected with influenza and vaccinia viruses vary in magnitude with H-2 genotype. J Exp Med. 1978 Aug 1;148(2):534–543. doi: 10.1084/jem.148.2.534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ehl S., Hoffmann-Rohrer U., Nagata S., Hengartner H., Zinkernagel R. Different susceptibility of cytotoxic T cells to CD95 (Fas/Apo-1) ligand-mediated cell death after activation in vitro versus in vivo. J Immunol. 1996 Apr 1;156(7):2357–2360. [PubMed] [Google Scholar]
  9. Fischer W. H., Beland P. E., Lutz W. K. DNA adducts, cell proliferation and papilloma latency time in mouse skin after repeated dermal application of DMBA and TPA. Carcinogenesis. 1993 Jul;14(7):1285–1288. doi: 10.1093/carcin/14.7.1285. [DOI] [PubMed] [Google Scholar]
  10. Fung-Leung W. P., Schilham M. W., Rahemtulla A., Kündig T. M., Vollenweider M., Potter J., van Ewijk W., Mak T. W. CD8 is needed for development of cytotoxic T cells but not helper T cells. Cell. 1991 May 3;65(3):443–449. doi: 10.1016/0092-8674(91)90462-8. [DOI] [PubMed] [Google Scholar]
  11. Garner R., Helgason C. D., Atkinson E. A., Pinkoski M. J., Ostergaard H. L., Sorensen O., Fu A., Lapchak P. H., Rabinovitch A., McElhaney J. E. Characterization of a granule-independent lytic mechanism used by CTL hybridomas. J Immunol. 1994 Dec 15;153(12):5413–5421. [PubMed] [Google Scholar]
  12. Greenberg P. D. Adoptive T cell therapy of tumors: mechanisms operative in the recognition and elimination of tumor cells. Adv Immunol. 1991;49:281–355. doi: 10.1016/s0065-2776(08)60778-6. [DOI] [PubMed] [Google Scholar]
  13. Kojima H., Shinohara N., Hanaoka S., Someya-Shirota Y., Takagaki Y., Ohno H., Saito T., Katayama T., Yagita H., Okumura K. Two distinct pathways of specific killing revealed by perforin mutant cytotoxic T lymphocytes. Immunity. 1994 Aug;1(5):357–364. doi: 10.1016/1074-7613(94)90066-3. [DOI] [PubMed] [Google Scholar]
  14. Kägi D., Ledermann B., Bürki K., Hengartner H., Zinkernagel R. M. CD8+ T cell-mediated protection against an intracellular bacterium by perforin-dependent cytotoxicity. Eur J Immunol. 1994 Dec;24(12):3068–3072. doi: 10.1002/eji.1830241223. [DOI] [PubMed] [Google Scholar]
  15. Kägi D., Ledermann B., Bürki K., Seiler P., Odermatt B., Olsen K. J., Podack E. R., Zinkernagel R. M., Hengartner H. Cytotoxicity mediated by T cells and natural killer cells is greatly impaired in perforin-deficient mice. Nature. 1994 May 5;369(6475):31–37. doi: 10.1038/369031a0. [DOI] [PubMed] [Google Scholar]
  16. Kägi D., Odermatt B., Ohashi P. S., Zinkernagel R. M., Hengartner H. Development of insulitis without diabetes in transgenic mice lacking perforin-dependent cytotoxicity. J Exp Med. 1996 May 1;183(5):2143–2152. doi: 10.1084/jem.183.5.2143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kägi D., Seiler P., Pavlovic J., Ledermann B., Bürki K., Zinkernagel R. M., Hengartner H. The roles of perforin- and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol. 1995 Dec;25(12):3256–3262. doi: 10.1002/eji.1830251209. [DOI] [PubMed] [Google Scholar]
  18. Kägi D., Vignaux F., Ledermann B., Bürki K., Depraetere V., Nagata S., Hengartner H., Golstein P. Fas and perforin pathways as major mechanisms of T cell-mediated cytotoxicity. Science. 1994 Jul 22;265(5171):528–530. doi: 10.1126/science.7518614. [DOI] [PubMed] [Google Scholar]
  19. Kärre K., Ljunggren H. G., Piontek G., Kiessling R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986 Feb 20;319(6055):675–678. doi: 10.1038/319675a0. [DOI] [PubMed] [Google Scholar]
  20. Kündig T. M., Bachmann M. F., Lefrancois L., Puddington L., Hengartner H., Zinkernagel R. M. Nonimmunogenic tumor cells may efficiently restimulate tumor antigen-specific cytotoxic T cells. J Immunol. 1993 May 15;150(10):4450–4456. [PubMed] [Google Scholar]
  21. Levy J. P., Leclerc J. C. The murine sarcoma virus-induced tumor: exception or general model in tumor immunology? Adv Cancer Res. 1977;24:1–66. doi: 10.1016/s0065-230x(08)61012-x. [DOI] [PubMed] [Google Scholar]
  22. Li Y., McGowan P., Hellström I., Hellström K. E., Chen L. Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol. 1994 Jul 1;153(1):421–428. [PubMed] [Google Scholar]
  23. Linsley P. S., Ledbetter J. A. The role of the CD28 receptor during T cell responses to antigen. Annu Rev Immunol. 1993;11:191–212. doi: 10.1146/annurev.iy.11.040193.001203. [DOI] [PubMed] [Google Scholar]
  24. Lowin B., Hahne M., Mattmann C., Tschopp J. Cytolytic T-cell cytotoxicity is mediated through perforin and Fas lytic pathways. Nature. 1994 Aug 25;370(6491):650–652. doi: 10.1038/370650a0. [DOI] [PubMed] [Google Scholar]
  25. Mackett M., Yilma T., Rose J. K., Moss B. Vaccinia virus recombinants: expression of VSV genes and protective immunization of mice and cattle. Science. 1985 Jan 25;227(4685):433–435. doi: 10.1126/science.2981435. [DOI] [PubMed] [Google Scholar]
  26. Melief C. J. Tumor eradication by adoptive transfer of cytotoxic T lymphocytes. Adv Cancer Res. 1992;58:143–175. doi: 10.1016/s0065-230x(08)60294-8. [DOI] [PubMed] [Google Scholar]
  27. Owen-Schaub L. B., Radinsky R., Kruzel E., Berry K., Yonehara S. Anti-Fas on nonhematopoietic tumors: levels of Fas/APO-1 and bcl-2 are not predictive of biological responsiveness. Cancer Res. 1994 Mar 15;54(6):1580–1586. [PubMed] [Google Scholar]
  28. PREHN R. T., MAIN J. M. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957 Jun;18(6):769–778. [PubMed] [Google Scholar]
  29. Pircher H., Moskophidis D., Rohrer U., Bürki K., Hengartner H., Zinkernagel R. M. Viral escape by selection of cytotoxic T cell-resistant virus variants in vivo. Nature. 1990 Aug 16;346(6285):629–633. doi: 10.1038/346629a0. [DOI] [PubMed] [Google Scholar]
  30. Puddington L., Bevan M. J., Rose J. K., Lefrançois L. N protein is the predominant antigen recognized by vesicular stomatitis virus-specific cytotoxic T cells. J Virol. 1986 Nov;60(2):708–717. doi: 10.1128/jvi.60.2.708-717.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schrier P. I., Bernards R., Vaessen R. T., Houweling A., van der Eb A. J. Expression of class I major histocompatibility antigens switched off by highly oncogenic adenovirus 12 in transformed rat cells. 1983 Oct 27-Nov 2Nature. 305(5937):771–775. doi: 10.1038/305771a0. [DOI] [PubMed] [Google Scholar]
  32. Schulz M., Schuurman H. J., Joergensen J., Steiner C., Meerloo T., Kägi D., Hengartner H., Zinkernagel R. M., Schreier M. H., Bürki K. Acute rejection of vascular heart allografts by perforin-deficient mice. Eur J Immunol. 1995 Feb;25(2):474–480. doi: 10.1002/eji.1830250225. [DOI] [PubMed] [Google Scholar]
  33. Sheehan K. C., Ruddle N. H., Schreiber R. D. Generation and characterization of hamster monoclonal antibodies that neutralize murine tumor necrosis factors. J Immunol. 1989 Jun 1;142(11):3884–3893. [PubMed] [Google Scholar]
  34. Shinkai Y., Rathbun G., Lam K. P., Oltz E. M., Stewart V., Mendelsohn M., Charron J., Datta M., Young F., Stall A. M. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell. 1992 Mar 6;68(5):855–867. doi: 10.1016/0092-8674(92)90029-c. [DOI] [PubMed] [Google Scholar]
  35. Smith M. E., Marsh S. G., Bodmer J. G., Gelsthorpe K., Bodmer W. F. Loss of HLA-A,B,C allele products and lymphocyte function-associated antigen 3 in colorectal neoplasia. Proc Natl Acad Sci U S A. 1989 Jul;86(14):5557–5561. doi: 10.1073/pnas.86.14.5557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Stukart M. J., Vos A., Boes J., Melvold R. W., Bailey D. W., Melief C. J. A crucial role of the H-2 D locus in the regulation of both the D- and the K-associated cytotoxic T lymphocyte response against Moloney leukemia virus, demonstrated with two Db mutants. J Immunol. 1982 Mar;128(3):1360–1364. [PubMed] [Google Scholar]
  37. Stukart M. J., Vos A., Melitef C. J. Cytotoxic T cell response against lymphoblasts infected with Moloney (Abelson) murine leukemia virus. Methodological aspects and H-2 requirements. Eur J Immunol. 1981 Mar;11(3):251–257. doi: 10.1002/eji.1830110316. [DOI] [PubMed] [Google Scholar]
  38. Toes R. E., Offringa R., Blom R. J., Brandt R. M., van der Eb A. J., Melief C. J., Kast W. M. An adenovirus type 5 early region 1B-encoded CTL epitope-mediating tumor eradication by CTL clones is down-modulated by an activated ras oncogene. J Immunol. 1995 Apr 1;154(7):3396–3405. [PubMed] [Google Scholar]
  39. Uyttenhove C., Maryanski J., Boon T. Escape of mouse mastocytoma P815 after nearly complete rejection is due to antigen-loss variants rather than immunosuppression. J Exp Med. 1983 Mar 1;157(3):1040–1052. doi: 10.1084/jem.157.3.1040. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Pel A., van der Bruggen P., Coulie P. G., Brichard V. G., Lethé B., van den Eynde B., Uyttenhove C., Renauld J. C., Boon T. Genes coding for tumor antigens recognized by cytolytic T lymphocytes. Immunol Rev. 1995 Jun;145:229–250. doi: 10.1111/j.1600-065x.1995.tb00084.x. [DOI] [PubMed] [Google Scholar]
  41. Walsh C. M., Hayashi F., Saffran D. C., Ju S. T., Berke G., Clark W. R. Cell-mediated cytotoxicity results from, but may not be critical for, primary allograft rejection. J Immunol. 1996 Feb 15;156(4):1436–1441. [PubMed] [Google Scholar]
  42. Walsh C. M., Matloubian M., Liu C. C., Ueda R., Kurahara C. G., Christensen J. L., Huang M. T., Young J. D., Ahmed R., Clark W. R. Immune function in mice lacking the perforin gene. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):10854–10858. doi: 10.1073/pnas.91.23.10854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. van den Broek M. F., Kägi D., Zinkernagel R. M., Hengartner H. Perforin dependence of natural killer cell-mediated tumor control in vivo. Eur J Immunol. 1995 Dec;25(12):3514–3516. doi: 10.1002/eji.1830251246. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES