Abstract
T cell receptor (TCR)-recognizing regulatory cells, induced after vaccination with self-reactive T cells or TCR peptides, have been shown to prevent autoimmunity. We have asked whether this regulation is involved in the maintenance of peripheral tolerance to myelin basic protein (MBP) in an autoimmune disease model, experimental autoimmune encephalomyelitis (EAE). Antigen-induced EAE in (SJL x B10.PL)F1 mice is transient in that most animals recover permanently from the disease. Most of the initial encephalitogenic T cells recognize MBP Ac1-9 and predominantly use the TCR V beta 8.2 gene segment. In mice recovering from MBP-induced EAE, regulatory CD4+ T cells (Treg) specific for a single immunodominant TCR peptide B5 (76-101) from framework region 3 of the V beta 8.2 chain, become primed. We have earlier shown that cloned B5-reactive Treg can specifically downregulate responses to Ac1- 9 and also protect mice from EAE. These CD4 Treg clones predominantly use the TCR V beta 14 or V beta 3 gene segments. Here we have directly tested whether deletion/blocking of the Treg from the peripheral repertoire affects the spontaneous recovery from EAE. Treatment of F1 mice with appropriate V beta-specific monoclonal antibodies resulted in an increase in the severity and duration of the disease; even relapses were seen in one-third to one-half of the Treg-deleted mice. Interestingly, chronic disease in treated mice appears to be due to the presence of Ac1-9-specific T cells. Thus, once self-tolerance to MBP is broken by immunization with the antigen in strong adjuvant, TCR peptide- specific CD4 Treg cells participate in reestablishing peripheral tolerance. Thus, a failure to generate Treg may be implicated in chronic autoimmune conditions.
Full Text
The Full Text of this article is available as a PDF (710.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Acha-Orbea H., Mitchell D. J., Timmermann L., Wraith D. C., Tausch G. S., Waldor M. K., Zamvil S. S., McDevitt H. O., Steinman L. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell. 1988 Jul 15;54(2):263–273. doi: 10.1016/0092-8674(88)90558-2. [DOI] [PubMed] [Google Scholar]
- Ashton-Rickardt P. G., Tonegawa S. A differential-avidity model for T-cell selection. Immunol Today. 1994 Aug;15(8):362–366. doi: 10.1016/0167-5699(94)90174-0. [DOI] [PubMed] [Google Scholar]
- Bell R. B., Lindsey J. W., Sobel R. A., Hodgkinson S., Steinman L. Diverse T cell receptor V beta gene usage in the central nervous system in experimental allergic encephalomyelitis. J Immunol. 1993 May 1;150(9):4085–4092. [PubMed] [Google Scholar]
- Ben-Nun A., Wekerle H., Cohen I. R. Vaccination against autoimmune encephalomyelitis with T-lymphocyte line cells reactive against myelin basic protein. Nature. 1981 Jul 2;292(5818):60–61. doi: 10.1038/292060a0. [DOI] [PubMed] [Google Scholar]
- Bhardwaj V., Kumar V., Geysen H. M., Sercarz E. E. Degenerate recognition of a dissimilar antigenic peptide by myelin basic protein-reactive T cells. Implications for thymic education and autoimmunity. J Immunol. 1993 Nov 1;151(9):5000–5010. [PubMed] [Google Scholar]
- Bill J., Kanagawa O., Linten J., Utsunomiya Y., Palmer E. Class I and class II MHC gene products differentially affect the fate of V beta 5 bearing thymocytes. J Mol Cell Immunol. 1990;4(5):269–280. [PubMed] [Google Scholar]
- Clark-Lewis I., Aebersold R., Ziltener H., Schrader J. W., Hood L. E., Kent S. B. Automated chemical synthesis of a protein growth factor for hemopoietic cells, interleukin-3. Science. 1986 Jan 10;231(4734):134–139. doi: 10.1126/science.3079915. [DOI] [PubMed] [Google Scholar]
- Gammon G., Sercarz E. How some T cells escape tolerance induction. Nature. 1989 Nov 9;342(6246):183–185. doi: 10.1038/342183a0. [DOI] [PubMed] [Google Scholar]
- Heber-Katz E., Acha-Orbea H. The V-region disease hypothesis: evidence from autoimmune encephalomyelitis. Immunol Today. 1989 May;10(5):164–169. doi: 10.1016/0167-5699(89)90174-6. [DOI] [PubMed] [Google Scholar]
- Howell M. D., Winters S. T., Olee T., Powell H. C., Carlo D. J., Brostoff S. W. Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science. 1989 Nov 3;246(4930):668–670. doi: 10.1126/science.2814489. [DOI] [PubMed] [Google Scholar]
- Jiang H., Sercarz E., Nitecki D., Pernis B. The problems of presentation of T cell receptor peptides by activated T cells. Ann N Y Acad Sci. 1991 Dec 30;636:28–32. doi: 10.1111/j.1749-6632.1991.tb33435.x. [DOI] [PubMed] [Google Scholar]
- Jiang H., Zhang S. I., Pernis B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science. 1992 May 22;256(5060):1213–1215. doi: 10.1126/science.256.5060.1213. [DOI] [PubMed] [Google Scholar]
- Koh D. R., Fung-Leung W. P., Ho A., Gray D., Acha-Orbea H., Mak T. W. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8-/- mice. Science. 1992 May 22;256(5060):1210–1213. doi: 10.1126/science.256.5060.1210. [DOI] [PubMed] [Google Scholar]
- Kumar V., Kono D. H., Urban J. L., Hood L. The T-cell receptor repertoire and autoimmune diseases. Annu Rev Immunol. 1989;7:657–682. doi: 10.1146/annurev.iy.07.040189.003301. [DOI] [PubMed] [Google Scholar]
- Kumar V., Sercarz E. E. The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J Exp Med. 1993 Sep 1;178(3):909–916. doi: 10.1084/jem.178.3.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar V., Sercarz E. Holes in the T cell repertoire to myelin basic protein owing to the absence of the D beta 2-J beta 2 gene cluster: implications for T cell receptor recognition and autoimmunity. J Exp Med. 1994 May 1;179(5):1637–1643. doi: 10.1084/jem.179.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar V., Sercarz E. T cell regulatory circuitry: antigen-specific and TCR-idiopeptide-specific T cell interactions in EAE. Int Rev Immunol. 1993;9(4):287–297. doi: 10.3109/08830189309051212. [DOI] [PubMed] [Google Scholar]
- Kumar V., Tabibiazar R., Geysen H. M., Sercarz E. Immunodominant framework region 3 peptide from TCR V beta 8.2 chain controls murine experimental autoimmune encephalomyelitis. J Immunol. 1995 Feb 15;154(4):1941–1950. [PubMed] [Google Scholar]
- Lehmann P. V., Forsthuber T., Miller A., Sercarz E. E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature. 1992 Jul 9;358(6382):155–157. doi: 10.1038/358155a0. [DOI] [PubMed] [Google Scholar]
- Liao N. S., Maltzman J., Raulet D. H. Positive selection determines T cell receptor V beta 14 gene usage by CD8+ T cells. J Exp Med. 1989 Jul 1;170(1):135–143. doi: 10.1084/jem.170.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marrack P., Kappler J. The T-cell repertoire for antigen and MHC. Immunol Today. 1988 Oct;9(10):308–315. doi: 10.1016/0167-5699(88)91324-2. [DOI] [PubMed] [Google Scholar]
- Mason D., Fowell D. T-cell subsets in autoimmunity. Curr Opin Immunol. 1992 Dec;4(6):728–732. doi: 10.1016/0952-7915(92)90053-h. [DOI] [PubMed] [Google Scholar]
- McRae B. L., Vanderlugt C. L., Dal Canto M. C., Miller S. D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J Exp Med. 1995 Jul 1;182(1):75–85. doi: 10.1084/jem.182.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Garra A., Murphy K. T-cell subsets in autoimmunity. Curr Opin Immunol. 1993 Dec;5(6):880–886. doi: 10.1016/0952-7915(93)90100-7. [DOI] [PubMed] [Google Scholar]
- Offner H., Malotky M. K., Pope L., Vainiene M., Celnik B., Miller S. D., Vandenbark A. A. Increased severity of experimental autoimmune encephalomyelitis in rats tolerized as adults but not neonatally to a protective TCR V beta 8 CDR2 idiotope. J Immunol. 1995 Jan 15;154(2):928–935. [PubMed] [Google Scholar]
- Powell M. B., Mitchell D., Lederman J., Buckmeier J., Zamvil S. S., Graham M., Ruddle N. H., Steinman L. Lymphotoxin and tumor necrosis factor-alpha production by myelin basic protein-specific T cell clones correlates with encephalitogenicity. Int Immunol. 1990;2(6):539–544. doi: 10.1093/intimm/2.6.539. [DOI] [PubMed] [Google Scholar]
- Powrie F., Mason D. OX-22high CD4+ T cells induce wasting disease with multiple organ pathology: prevention by the OX-22low subset. J Exp Med. 1990 Dec 1;172(6):1701–1708. doi: 10.1084/jem.172.6.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pullen A. M., Marrack P., Kappler J. W. The T-cell repertoire is heavily influenced by tolerance to polymorphic self-antigens. Nature. 1988 Oct 27;335(6193):796–801. doi: 10.1038/335796a0. [DOI] [PubMed] [Google Scholar]
- Singh R. R., Hahn B. H., Sercarz E. E. Neonatal peptide exposure can prime T cells and, upon subsequent immunization, induce their immune deviation: implications for antibody vs. T cell-mediated autoimmunity. J Exp Med. 1996 Apr 1;183(4):1613–1621. doi: 10.1084/jem.183.4.1613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprent J., Lo D., Gao E. K., Ron Y. T cell selection in the thymus. Immunol Rev. 1988 Jan;101:173–190. doi: 10.1111/j.1600-065x.1988.tb00737.x. [DOI] [PubMed] [Google Scholar]
- Sugihara S., Maruo S., Tsujimura T., Tarutani O., Kohno Y., Hamaoka T., Fujiwara H. Autoimmune thyroiditis induced in mice depleted of particular T cell subsets. III. Analysis of regulatory cells suppressing the induction of thyroiditis. Int Immunol. 1990;2(4):343–351. doi: 10.1093/intimm/2.4.343. [DOI] [PubMed] [Google Scholar]
- Urban J. L., Kumar V., Kono D. H., Gomez C., Horvath S. J., Clayton J., Ando D. G., Sercarz E. E., Hood L. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy. Cell. 1988 Aug 12;54(4):577–592. doi: 10.1016/0092-8674(88)90079-7. [DOI] [PubMed] [Google Scholar]
- Vandenbark A. A., Hashim G., Offner H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature. 1989 Oct 12;341(6242):541–544. doi: 10.1038/341541a0. [DOI] [PubMed] [Google Scholar]