Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Nov 1;184(5):1737–1745. doi: 10.1084/jem.184.5.1737

Microglia induce CD4 T lymphocyte final effector function and death

PMCID: PMC2192872  PMID: 8920862

Abstract

Microglia, a type of tissue macrophage, are the only cells in the central nervous system (CNS) parenchyma to express some major histocompatibility complex (MHC) class II constitutively or to upregulate expression readily. They are thought to play a role in CD4 T cell activation in autoimmune diseases such as multiple sclerosis, as well as in neurodegenerative conditions, Alzheimer's disease in particular. We show here that highly purified MHC class II+ microglia when tested directly ex vivo do indeed support an effector response by an encephalitogenic myelin basic protein-reactive CD4 T cell line from which production of the proinflammatory cytokines, interferon gamma and tumor necrosis factor, is elicited, but not interleukin (IL)-2 secretion or proliferation. After this interaction, the T cells die by apoptosis. Other nonmicroglial but CNS-associated macrophages isolated in parallel stimulate full T cell activation, including IL-2 production, proliferation, and support T cell survival. Neither CNS- derived population expresses B7.1/B7.2. Resident macrophages that terminate effector T cells in tissues constitute a novel and broadly applicable regulatory measure of particular relevance to processes of self-tolerance against sequestered antigens.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akbar A. N., Borthwick N. J., Wickremasinghe R. G., Panayoitidis P., Pilling D., Bofill M., Krajewski S., Reed J. C., Salmon M. Interleukin-2 receptor common gamma-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur J Immunol. 1996 Feb;26(2):294–299. doi: 10.1002/eji.1830260204. [DOI] [PubMed] [Google Scholar]
  2. Bauer J., Wekerle H., Lassmann H. Apoptosis in brain-specific autoimmune disease. Curr Opin Immunol. 1995 Dec;7(6):839–843. doi: 10.1016/0952-7915(95)80057-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bellgrau D., Gold D., Selawry H., Moore J., Franzusoff A., Duke R. C. A role for CD95 ligand in preventing graft rejection. Nature. 1995 Oct 19;377(6550):630–632. doi: 10.1038/377630a0. [DOI] [PubMed] [Google Scholar]
  4. Boise L. H., Minn A. J., June C. H., Lindsten T., Thompson C. B. Growth factors can enhance lymphocyte survival without committing the cell to undergo cell division. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5491–5495. doi: 10.1073/pnas.92.12.5491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Boux H. A., Raison R. L., Walker K. Z., Musgrove E., Basten A. The surface expression of a tumor-associated antigen on human kappa myeloma cells. Eur J Immunol. 1984 Mar;14(3):216–222. doi: 10.1002/eji.1830140304. [DOI] [PubMed] [Google Scholar]
  6. Crispe I. N. Fatal interactions: Fas-induced apoptosis of mature T cells. Immunity. 1994 Aug;1(5):347–349. doi: 10.1016/1074-7613(94)90064-7. [DOI] [PubMed] [Google Scholar]
  7. De Simone R., Giampaolo A., Giometto B., Gallo P., Levi G., Peschle C., Aloisi F. The costimulatory molecule B7 is expressed on human microglia in culture and in multiple sclerosis acute lesions. J Neuropathol Exp Neurol. 1995 Mar;54(2):175–187. doi: 10.1097/00005072-199503000-00004. [DOI] [PubMed] [Google Scholar]
  8. Espevik T., Nissen-Meyer J. A highly sensitive cell line, WEHI 164 clone 13, for measuring cytotoxic factor/tumor necrosis factor from human monocytes. J Immunol Methods. 1986 Dec 4;95(1):99–105. doi: 10.1016/0022-1759(86)90322-4. [DOI] [PubMed] [Google Scholar]
  9. Ford A. L., Goodsall A. L., Hickey W. F., Sedgwick J. D. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein-reactive CD4+ T cells compared. J Immunol. 1995 May 1;154(9):4309–4321. [PubMed] [Google Scholar]
  10. Goodnow C. C. Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires. Proc Natl Acad Sci U S A. 1996 Mar 19;93(6):2264–2271. doi: 10.1073/pnas.93.6.2264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Grell M., Douni E., Wajant H., Löhden M., Clauss M., Maxeiner B., Georgopoulos S., Lesslauer W., Kollias G., Pfizenmaier K. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995 Dec 1;83(5):793–802. doi: 10.1016/0092-8674(95)90192-2. [DOI] [PubMed] [Google Scholar]
  12. Griffith T. S., Brunner T., Fletcher S. M., Green D. R., Ferguson T. A. Fas ligand-induced apoptosis as a mechanism of immune privilege. Science. 1995 Nov 17;270(5239):1189–1192. doi: 10.1126/science.270.5239.1189. [DOI] [PubMed] [Google Scholar]
  13. Hickey W. F., Kimura H. Graft-vs.-host disease elicits expression of class I and class II histocompatibility antigens and the presence of scattered T lymphocytes in rat central nervous system. Proc Natl Acad Sci U S A. 1987 Apr;84(7):2082–2086. doi: 10.1073/pnas.84.7.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hickey W. F., Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 1988 Jan 15;239(4837):290–292. doi: 10.1126/science.3276004. [DOI] [PubMed] [Google Scholar]
  15. Hickey W. F., Vass K., Lassmann H. Bone marrow-derived elements in the central nervous system: an immunohistochemical and ultrastructural survey of rat chimeras. J Neuropathol Exp Neurol. 1992 May;51(3):246–256. doi: 10.1097/00005072-199205000-00002. [DOI] [PubMed] [Google Scholar]
  16. Hunt S. V., Fowler M. H. A repopulation assay for B and T lymphocyte stem cells employing radiation chimaeras. Cell Tissue Kinet. 1981 Jul;14(4):445–464. doi: 10.1111/j.1365-2184.1981.tb00551.x. [DOI] [PubMed] [Google Scholar]
  17. Hünig T., Wallny H. J., Hartley J. K., Lawetzky A., Tiefenthaler G. A monoclonal antibody to a constant determinant of the rat T cell antigen receptor that induces T cell activation. Differential reactivity with subsets of immature and mature T lymphocytes. J Exp Med. 1989 Jan 1;169(1):73–86. doi: 10.1084/jem.169.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jenkins M. K., Schwartz R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J Exp Med. 1987 Feb 1;165(2):302–319. doi: 10.1084/jem.165.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lane P., Gerhard W., Hubele S., Lanzavecchia A., McConnell F. Expression and functional properties of mouse B7/BB1 using a fusion protein between mouse CTLA4 and human gamma 1. Immunology. 1993 Sep;80(1):56–61. [PMC free article] [PubMed] [Google Scholar]
  20. Lublin F. D., Knobler R. L., Kalman B., Goldhaber M., Marini J., Perrault M., D'Imperio C., Joseph J., Alkan S. S., Korngold R. Monoclonal anti-gamma interferon antibodies enhance experimental allergic encephalomyelitis. Autoimmunity. 1993;16(4):267–274. doi: 10.3109/08916939309014645. [DOI] [PubMed] [Google Scholar]
  21. Matsumoto Y., Hara N., Tanaka R., Fujiwara M. Immunohistochemical analysis of the rat central nervous system during experimental allergic encephalomyelitis, with special reference to Ia-positive cells with dendritic morphology. J Immunol. 1986 May 15;136(10):3668–3676. [PubMed] [Google Scholar]
  22. Matsumoto Y., Ohmori K., Fujiwara M. Immune regulation by brain cells in the central nervous system: microglia but not astrocytes present myelin basic protein to encephalitogenic T cells under in vivo-mimicking conditions. Immunology. 1992 Jun;76(2):209–216. [PMC free article] [PubMed] [Google Scholar]
  23. Mattiace L. A., Davies P., Dickson D. W. Detection of HLA-DR on microglia in the human brain is a function of both clinical and technical factors. Am J Pathol. 1990 May;136(5):1101–1114. [PMC free article] [PubMed] [Google Scholar]
  24. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045. doi: 10.1146/annurev.iy.12.040194.005015. [DOI] [PubMed] [Google Scholar]
  25. Meda L., Cassatella M. A., Szendrei G. I., Otvos L., Jr, Baron P., Villalba M., Ferrari D., Rossi F. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature. 1995 Apr 13;374(6523):647–650. doi: 10.1038/374647a0. [DOI] [PubMed] [Google Scholar]
  26. Munn D. H., Pressey J., Beall A. C., Hudes R., Alderson M. R. Selective activation-induced apoptosis of peripheral T cells imposed by macrophages. A potential mechanism of antigen-specific peripheral lymphocyte deletion. J Immunol. 1996 Jan 15;156(2):523–532. [PubMed] [Google Scholar]
  27. Ohmori K., Hong Y., Fujiwara M., Matsumoto Y. In situ demonstration of proliferating cells in the rat central nervous system during experimental autoimmune encephalomyelitis. Evidence suggesting that most infiltrating T cells do not proliferate in the target organ. Lab Invest. 1992 Jan;66(1):54–62. [PubMed] [Google Scholar]
  28. Parish C. R., Liew F. Y. Immune response to chemically modified flagellin. 3. Enhanced cell-mediated immunity during high and low zone antibody tolerance to flagellin. J Exp Med. 1972 Feb 1;135(2):298–311. doi: 10.1084/jem.135.2.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Paterson D. J., Jefferies W. A., Green J. R., Brandon M. R., Corthesy P., Puklavec M., Williams A. F. Antigens of activated rat T lymphocytes including a molecule of 50,000 Mr detected only on CD4 positive T blasts. Mol Immunol. 1987 Dec;24(12):1281–1290. doi: 10.1016/0161-5890(87)90122-2. [DOI] [PubMed] [Google Scholar]
  30. Pender M. P., Nguyen K. B., McCombe P. A., Kerr J. F. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J Neurol Sci. 1991 Jul;104(1):81–87. doi: 10.1016/0022-510x(91)90219-w. [DOI] [PubMed] [Google Scholar]
  31. Perry V. H., Gordon S. Macrophages and microglia in the nervous system. Trends Neurosci. 1988 Jun;11(6):273–277. doi: 10.1016/0166-2236(88)90110-5. [DOI] [PubMed] [Google Scholar]
  32. Rinner W. A., Bauer J., Schmidts M., Lassmann H., Hickey W. F. Resident microglia and hematogenous macrophages as phagocytes in adoptively transferred experimental autoimmune encephalomyelitis: an investigation using rat radiation bone marrow chimeras. Glia. 1995 Aug;14(4):257–266. doi: 10.1002/glia.440140403. [DOI] [PubMed] [Google Scholar]
  33. Sedgwick J. D., MacPhee I. A., Puklavec M. Isolation of encephalitogenic CD4+ T cell clones in the rat. Cloning methodology and interferon-gamma secretion. J Immunol Methods. 1989 Jul 26;121(2):185–196. doi: 10.1016/0022-1759(89)90159-2. [DOI] [PubMed] [Google Scholar]
  34. Sedgwick J. D., Mössner R., Schwender S., ter Meulen V. Major histocompatibility complex-expressing nonhematopoietic astroglial cells prime only CD8+ T lymphocytes: astroglial cells as perpetuators but not initiators of CD4+ T cell responses in the central nervous system. J Exp Med. 1991 May 1;173(5):1235–1246. doi: 10.1084/jem.173.5.1235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sedgwick J. D., Schwender S., Gregersen R., Dörries R., ter Meulen V. Resident macrophages (ramified microglia) of the adult brown Norway rat central nervous system are constitutively major histocompatibility complex class II positive. J Exp Med. 1993 Apr 1;177(4):1145–1152. doi: 10.1084/jem.177.4.1145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sedgwick J. D., Schwender S., Imrich H., Dörries R., Butcher G. W., ter Meulen V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438–7442. doi: 10.1073/pnas.88.16.7438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sedgwick J., Brostoff S., Mason D. Experimental allergic encephalomyelitis in the absence of a classical delayed-type hypersensitivity reaction. Severe paralytic disease correlates with the presence of interleukin 2 receptor-positive cells infiltrating the central nervous system. J Exp Med. 1987 Apr 1;165(4):1058–1075. doi: 10.1084/jem.165.4.1058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sprent J. T and B memory cells. Cell. 1994 Jan 28;76(2):315–322. doi: 10.1016/0092-8674(94)90338-7. [DOI] [PubMed] [Google Scholar]
  39. Strickland D., Kees U. R., Holt P. G. Regulation of T-cell activation in the lung: alveolar macrophages induce reversible T-cell anergy in vitro associated with inhibition of interleukin-2 receptor signal transduction. Immunology. 1996 Feb;87(2):250–258. doi: 10.1046/j.1365-2567.1996.459542.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Styren S. D., Civin W. H., Rogers J. Molecular, cellular, and pathologic characterization of HLA-DR immunoreactivity in normal elderly and Alzheimer's disease brain. Exp Neurol. 1990 Oct;110(1):93–104. doi: 10.1016/0014-4886(90)90054-v. [DOI] [PubMed] [Google Scholar]
  41. Süss G., Shortman K. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med. 1996 Apr 1;183(4):1789–1796. doi: 10.1084/jem.183.4.1789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ulvestad E., Williams K., Bjerkvig R., Tiekotter K., Antel J., Matre R. Human microglial cells have phenotypic and functional characteristics in common with both macrophages and dendritic antigen-presenting cells. J Leukoc Biol. 1994 Dec;56(6):732–740. doi: 10.1002/jlb.56.6.732. [DOI] [PubMed] [Google Scholar]
  43. Voorthuis J. A., Uitdehaag B. M., De Groot C. J., Goede P. H., van der Meide P. H., Dijkstra C. D. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-gamma in Lewis rats. Clin Exp Immunol. 1990 Aug;81(2):183–188. doi: 10.1111/j.1365-2249.1990.tb03315.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Williams K., Ulvestad E., Antel J. P. B7/BB-1 antigen expression on adult human microglia studied in vitro and in situ. Eur J Immunol. 1994 Dec;24(12):3031–3037. doi: 10.1002/eji.1830241217. [DOI] [PubMed] [Google Scholar]
  45. Woodroofe M. N., Bellamy A. S., Feldmann M., Davison A. N., Cuzner M. L. Immunocytochemical characterisation of the immune reaction in the central nervous system in multiple sclerosis. Possible role for microglia in lesion growth. J Neurol Sci. 1986 Jul;74(2-3):135–152. doi: 10.1016/0022-510x(86)90100-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES