Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Nov 1;184(5):1871–1878. doi: 10.1084/jem.184.5.1871

Schistosoma mansoni egg-induced early IL-4 production is dependent upon IL-5 and eosinophils

PMCID: PMC2192874  PMID: 8920874

Abstract

The initial immune response to Schistosoma mansoni eggs presumably results in IL-4 production, as schistosome eggs are strong Th2-inducing antigens and the differentiation of antigen-specific Th2 cells is largely dependent on the presence of IL-4 during priming of naive Th cells. Consistent with this concept, intraperitoneal injection of mice with schistosome eggs results in an upregulation of IL-4 production by peritoneal exudate cells (PECs) within 12 h. Egg-induced IL-4 is rapidly bound by its receptor, suggesting that this cytokine is utilized by a cell type present at the site of antigen deposition or is complexed to soluble receptor. The peak of early IL-4 production is accompanied by a local eosinophilia and the apparent disappearance of mast cells. Studies utilizing either IL-4, IL-5, or mast cell-deficient mice indicate that the eosinophilia is dependent on mast cells and IL-5 and independent of IL-4. Strikingly, egg-induced IL-4 production is absent in animals lacking the early peritoneal eosinophilia. Immunocytochemical analysis of PEC following egg injection indicates that the eosinophils themselves make IL-4. These data strongly suggest that egg-induced IL-5 plays an essential role in recruiting eosinophils to the site of antigen deposition and that it is these eosinophils that then directly produce early IL-4.

Full Text

The Full Text of this article is available as a PDF (852.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai N., Naito Y., Watanabe M., Masuda E. S., Yamaguchi-Iwai Y., Tsuboi A., Heike T., Matsuda I., Yokota K., Koyano-Nakagawa N. Activation of lymphokine genes in T cells: role of cis-acting DNA elements that respond to T cell activation signals. Pharmacol Ther. 1992;55(3):303–318. doi: 10.1016/0163-7258(92)90054-4. [DOI] [PubMed] [Google Scholar]
  2. Beckmann M. P., Schooley K. A., Gallis B., Vanden Bos T., Friend D., Alpert A. R., Raunio R., Prickett K. S., Baker P. E., Park L. S. Monoclonal antibodies block murine IL-4 receptor function. J Immunol. 1990 Jun 1;144(11):4212–4217. [PubMed] [Google Scholar]
  3. Boros D. L., Warren K. S. Delayed hypersensitivity-type granuloma formation and dermal reaction induced and elicited by a soluble factor isolated from Schistosoma mansoni eggs. J Exp Med. 1970 Sep 1;132(3):488–507. doi: 10.1084/jem.132.3.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  5. Briscoe D. M., Cotran R. S., Pober J. S. Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo. Correlation with CD3+ T cell infiltration. J Immunol. 1992 Nov 1;149(9):2954–2960. [PubMed] [Google Scholar]
  6. Brorson K. A., Beverly B., Kang S. M., Lenardo M., Schwartz R. H. Transcriptional regulation of cytokine genes in nontransformed T cells. Apparent constitutive signals in run-on assays can be caused by repeat sequences. J Immunol. 1991 Nov 15;147(10):3601–3609. [PubMed] [Google Scholar]
  7. Coffman R. L., Seymour B. W., Hudak S., Jackson J., Rennick D. Antibody to interleukin-5 inhibits helminth-induced eosinophilia in mice. Science. 1989 Jul 21;245(4915):308–310. doi: 10.1126/science.2787531. [DOI] [PubMed] [Google Scholar]
  8. Coffman R. L., Varkila K., Scott P., Chatelain R. Role of cytokines in the differentiation of CD4+ T-cell subsets in vivo. Immunol Rev. 1991 Oct;123:189–207. doi: 10.1111/j.1600-065x.1991.tb00611.x. [DOI] [PubMed] [Google Scholar]
  9. Collins P. D., Marleau S., Griffiths-Johnson D. A., Jose P. J., Williams T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J Exp Med. 1995 Oct 1;182(4):1169–1174. doi: 10.1084/jem.182.4.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Corry D. B., Folkesson H. G., Warnock M. L., Erle D. J., Matthay M. A., Wiener-Kronish J. P., Locksley R. M. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med. 1996 Jan 1;183(1):109–117. doi: 10.1084/jem.183.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Del Pozo V., De Andrés B., Martín E., Cárdaba B., Fernández J. C., Gallardo S., Tramón P., Leyva-Cobian F., Palomino P., Lahoz C. Eosinophil as antigen-presenting cell: activation of T cell clones and T cell hybridoma by eosinophils after antigen processing. Eur J Immunol. 1992 Jul;22(7):1919–1925. doi: 10.1002/eji.1830220736. [DOI] [PubMed] [Google Scholar]
  12. Desreumaux P., Janin A., Colombel J. F., Prin L., Plumas J., Emilie D., Torpier G., Capron A., Capron M. Interleukin 5 messenger RNA expression by eosinophils in the intestinal mucosa of patients with coeliac disease. J Exp Med. 1992 Jan 1;175(1):293–296. doi: 10.1084/jem.175.1.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Durham S. R., Ying S., Varney V. A., Jacobson M. R., Sudderick R. M., Mackay I. S., Kay A. B., Hamid Q. A. Cytokine messenger RNA expression for IL-3, IL-4, IL-5, and granulocyte/macrophage-colony-stimulating factor in the nasal mucosa after local allergen provocation: relationship to tissue eosinophilia. J Immunol. 1992 Apr 15;148(8):2390–2394. [PubMed] [Google Scholar]
  14. Ebisawa M., Liu M. C., Yamada T., Kato M., Lichtenstein L. M., Bochner B. S., Schleimer R. P. Eosinophil transendothelial migration induced by cytokines. II. Potentiation of eosinophil transendothelial migration by eosinophil-active cytokines. J Immunol. 1994 May 1;152(9):4590–4596. [PubMed] [Google Scholar]
  15. Ferrick D. A., Schrenzel M. D., Mulvania T., Hsieh B., Ferlin W. G., Lepper H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature. 1995 Jan 19;373(6511):255–257. doi: 10.1038/373255a0. [DOI] [PubMed] [Google Scholar]
  16. Foster P. S., Hogan S. P., Ramsay A. J., Matthaei K. I., Young I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996 Jan 1;183(1):195–201. doi: 10.1084/jem.183.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ganzalo J. A., Jia G. Q., Aguirre V., Friend D., Coyle A. J., Jenkins N. A., Lin G. S., Katz H., Lichtman A., Copeland N. Mouse Eotaxin expression parallels eosinophil accumulation during lung allergic inflammation but it is not restricted to a Th2-type response. Immunity. 1996 Jan;4(1):1–14. doi: 10.1016/s1074-7613(00)80293-9. [DOI] [PubMed] [Google Scholar]
  18. Garlisi C. G., Falcone A., Kung T. T., Stelts D., Pennline K. J., Beavis A. J., Smith S. R., Egan R. W., Umland S. P. T cells are necessary for Th2 cytokine production and eosinophil accumulation in airways of antigen-challenged allergic mice. Clin Immunol Immunopathol. 1995 Apr;75(1):75–83. doi: 10.1006/clin.1995.1055. [DOI] [PubMed] [Google Scholar]
  19. Gerard N. P., Hodges M. K., Drazen J. M., Weller P. F., Gerard C. Characterization of a receptor for C5a anaphylatoxin on human eosinophils. J Biol Chem. 1989 Jan 25;264(3):1760–1766. [PubMed] [Google Scholar]
  20. Gollob K. J., Coffman R. L. A minority subpopulation of CD4+ T cells directs the development of naive CD4+ T cells into IL-4-secreting cells. J Immunol. 1994 Jun 1;152(11):5180–5188. [PubMed] [Google Scholar]
  21. Hsieh C. S., Heimberger A. B., Gold J. S., O'Garra A., Murphy K. M. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6065–6069. doi: 10.1073/pnas.89.13.6065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Ishida K., Thomson R. J., Beattie L. L., Wiggs B., Schellenberg R. R. Inhibition of antigen-induced airway hyperresponsiveness, but not acute hypoxia nor airway eosinophilia, by an antagonist of platelet-activating factor. J Immunol. 1990 May 15;144(10):3907–3911. [PubMed] [Google Scholar]
  23. Jose P. J., Griffiths-Johnson D. A., Collins P. D., Walsh D. T., Moqbel R., Totty N. F., Truong O., Hsuan J. J., Williams T. J. Eotaxin: a potent eosinophil chemoattractant cytokine detected in a guinea pig model of allergic airways inflammation. J Exp Med. 1994 Mar 1;179(3):881–887. doi: 10.1084/jem.179.3.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kopf M., Brombacher F., Hodgkin P. D., Ramsay A. J., Milbourne E. A., Dai W. J., Ovington K. S., Behm C. A., Köhler G., Young I. G. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 1996 Jan;4(1):15–24. doi: 10.1016/s1074-7613(00)80294-0. [DOI] [PubMed] [Google Scholar]
  25. Kopf M., Le Gros G., Bachmann M., Lamers M. C., Bluethmann H., Köhler G. Disruption of the murine IL-4 gene blocks Th2 cytokine responses. Nature. 1993 Mar 18;362(6417):245–248. doi: 10.1038/362245a0. [DOI] [PubMed] [Google Scholar]
  26. Le Gros G., Ben-Sasson S. Z., Seder R., Finkelman F. D., Paul W. E. Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. J Exp Med. 1990 Sep 1;172(3):921–929. doi: 10.1084/jem.172.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Maliszewski C. R., Sato T. A., Davison B., Jacobs C. A., Finkelman F. D., Fanslow W. C. In vivo biological effects of recombinant soluble interleukin-4 receptor. Proc Soc Exp Biol Med. 1994 Jul;206(3):233–237. doi: 10.3181/00379727-206-43750. [DOI] [PubMed] [Google Scholar]
  28. Mauser P. J., Pitman A., Witt A., Fernandez X., Zurcher J., Kung T., Jones H., Watnick A. S., Egan R. W., Kreutner W. Inhibitory effect of the TRFK-5 anti-IL-5 antibody in a guinea pig model of asthma. Am Rev Respir Dis. 1993 Dec;148(6 Pt 1):1623–1627. doi: 10.1164/ajrccm/148.6_Pt_1.1623. [DOI] [PubMed] [Google Scholar]
  29. Moqbel R., Ying S., Barkans J., Newman T. M., Kimmitt P., Wakelin M., Taborda-Barata L., Meng Q., Corrigan C. J., Durham S. R. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J Immunol. 1995 Nov 15;155(10):4939–4947. [PubMed] [Google Scholar]
  30. Mosley B., Beckmann M. P., March C. J., Idzerda R. L., Gimpel S. D., VandenBos T., Friend D., Alpert A., Anderson D., Jackson J. The murine interleukin-4 receptor: molecular cloning and characterization of secreted and membrane bound forms. Cell. 1989 Oct 20;59(2):335–348. doi: 10.1016/0092-8674(89)90295-x. [DOI] [PubMed] [Google Scholar]
  31. Murphy K. M., Murphy T. L., Gold J. S., Szabo S. J. Current understanding of IL4 gene regulation in T cells. Res Immunol. 1993 Oct;144(8):575–578. doi: 10.1016/s0923-2494(05)80005-7. [DOI] [PubMed] [Google Scholar]
  32. Nonaka M., Nonaka R., Woolley K., Adelroth E., Miura K., Okhawara Y., Glibetic M., Nakano K., O'Byrne P., Dolovich J. Distinct immunohistochemical localization of IL-4 in human inflamed airway tissues. IL-4 is localized to eosinophils in vivo and is released by peripheral blood eosinophils. J Immunol. 1995 Sep 15;155(6):3234–3244. [PubMed] [Google Scholar]
  33. Plaut M., Pierce J. H., Watson C. J., Hanley-Hyde J., Nordan R. P., Paul W. E. Mast cell lines produce lymphokines in response to cross-linkage of Fc epsilon RI or to calcium ionophores. Nature. 1989 May 4;339(6219):64–67. doi: 10.1038/339064a0. [DOI] [PubMed] [Google Scholar]
  34. Sabin E. A., Pearce E. J. Early IL-4 production by non-CD4+ cells at the site of antigen deposition predicts the development of a T helper 2 cell response to Schistosoma mansoni eggs. J Immunol. 1995 Nov 15;155(10):4844–4853. [PubMed] [Google Scholar]
  35. Sander B., Andersson J., Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991 Feb;119:65–93. doi: 10.1111/j.1600-065x.1991.tb00578.x. [DOI] [PubMed] [Google Scholar]
  36. Sato T. A., Widmer M. B., Finkelman F. D., Madani H., Jacobs C. A., Grabstein K. H., Maliszewski C. R. Recombinant soluble murine IL-4 receptor can inhibit or enhance IgE responses in vivo. J Immunol. 1993 Apr 1;150(7):2717–2723. [PubMed] [Google Scholar]
  37. Schleimer R. P., Sterbinsky S. A., Kaiser J., Bickel C. A., Klunk D. A., Tomioka K., Newman W., Luscinskas F. W., Gimbrone M. A., Jr, McIntyre B. W. IL-4 induces adherence of human eosinophils and basophils but not neutrophils to endothelium. Association with expression of VCAM-1. J Immunol. 1992 Feb 15;148(4):1086–1092. [PubMed] [Google Scholar]
  38. Seder R. A., Paul W. E., Davis M. M., Fazekas de St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992 Oct 1;176(4):1091–1098. doi: 10.1084/jem.176.4.1091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Seder R. A., Plaut M., Barbieri S., Urban J., Jr, Finkelman F. D., Paul W. E. Purified Fc epsilon R+ bone marrow and splenic non-B, non-T cells are highly enriched in the capacity to produce IL-4 in response to immobilized IgE, IgG2a, or ionomycin. J Immunol. 1991 Aug 1;147(3):903–909. [PubMed] [Google Scholar]
  40. Sher A., Coffman R. L., Hieny S., Scott P., Cheever A. W. Interleukin 5 is required for the blood and tissue eosinophilia but not granuloma formation induced by infection with Schistosoma mansoni. Proc Natl Acad Sci U S A. 1990 Jan;87(1):61–65. doi: 10.1073/pnas.87.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Swain S. L., Weinberg A. D., English M., Huston G. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990 Dec 1;145(11):3796–3806. [PubMed] [Google Scholar]
  42. Takatsu K., Takaki S., Hitoshi Y. Interleukin-5 and its receptor system: implications in the immune system and inflammation. Adv Immunol. 1994;57:145–190. doi: 10.1016/s0065-2776(08)60673-2. [DOI] [PubMed] [Google Scholar]
  43. Urban J. F., Jr, Madden K. B., Svetić A., Cheever A., Trotta P. P., Gause W. C., Katona I. M., Finkelman F. D. The importance of Th2 cytokines in protective immunity to nematodes. Immunol Rev. 1992 Jun;127:205–220. doi: 10.1111/j.1600-065x.1992.tb01415.x. [DOI] [PubMed] [Google Scholar]
  44. Vella A. T., Pearce E. J. Schistosoma mansoni egg-primed Th0 and Th2 cells: failure to down-regulate IFN-gamma production following in vitro culture. Scand J Immunol. 1994 Jan;39(1):12–18. doi: 10.1111/j.1365-3083.1994.tb03333.x. [DOI] [PubMed] [Google Scholar]
  45. Walsh G. M., Hartnell A., Wardlaw A. J., Kurihara K., Sanderson C. J., Kay A. B. IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology. 1990 Oct;71(2):258–265. [PMC free article] [PubMed] [Google Scholar]
  46. Weller P. F., Rand T. H., Barrett T., Elovic A., Wong D. T., Finberg R. W. Accessory cell function of human eosinophils. HLA-DR-dependent, MHC-restricted antigen-presentation and IL-1 alpha expression. J Immunol. 1993 Mar 15;150(6):2554–2562. [PubMed] [Google Scholar]
  47. Yamaguchi Y., Hayashi Y., Sugama Y., Miura Y., Kasahara T., Kitamura S., Torisu M., Mita S., Tominaga A., Takatsu K. Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med. 1988 May 1;167(5):1737–1742. doi: 10.1084/jem.167.5.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yoshimoto T., Bendelac A., Watson C., Hu-Li J., Paul W. E. Role of NK1.1+ T cells in a TH2 response and in immunoglobulin E production. Science. 1995 Dec 15;270(5243):1845–1847. doi: 10.1126/science.270.5243.1845. [DOI] [PubMed] [Google Scholar]
  49. Yoshimoto T., Paul W. E. CD4pos, NK1.1pos T cells promptly produce interleukin 4 in response to in vivo challenge with anti-CD3. J Exp Med. 1994 Apr 1;179(4):1285–1295. doi: 10.1084/jem.179.4.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES