Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1996 Nov 1;184(5):1909–1918. doi: 10.1084/jem.184.5.1909

Proteasome activity is required for the stage-specific transformation of a protozoan parasite

PMCID: PMC2192890  PMID: 8920878

Abstract

A prominent feature of the life cycle of intracellular parasites is the profound morphological changes they undergo during development in the vertebrate and invertebrate hosts. In eukaryotic cells, most cytoplasmic proteins are degraded in proteasomes. Here, we show that the transformation in axenic medium of trypomastigotes of Trypanosoma cruzi into amastigote-like organisms, and the intracellular development of the parasite from amastigotes into trypomastigotes, are prevented by lactacystin, or by a peptide aldehyde that inhibits proteasome function. Clasto-lactacystin, an inactive analogue of lactacystin, and cell-permeant peptide aldehyde inhibitors of T. cruzi cysteine proteinases have no effect. We have also identified the 20S proteasomes from T. cruzi as a target of lactacystin in vivo. Our results document the essential role of proteasomes in the stage-specific transformation of a protozoan.

Full Text

The Full Text of this article is available as a PDF (956.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews N. W., Hong K. S., Robbins E. S., Nussenzweig V. Stage-specific surface antigens expressed during the morphogenesis of vertebrate forms of Trypanosoma cruzi. Exp Parasitol. 1987 Dec;64(3):474–484. doi: 10.1016/0014-4894(87)90062-2. [DOI] [PubMed] [Google Scholar]
  2. Ashall F. Characterisation of an alkaline peptidase of Trypanosoma cruzi and other trypanosomatids. Mol Biochem Parasitol. 1990 Jan 1;38(1):77–87. doi: 10.1016/0166-6851(90)90207-3. [DOI] [PubMed] [Google Scholar]
  3. Baumeister W., Dahlmann B., Hegerl R., Kopp F., Kuehn L., Pfeifer G. Electron microscopy and image analysis of the multicatalytic proteinase. FEBS Lett. 1988 Dec 5;241(1-2):239–245. doi: 10.1016/0014-5793(88)81069-x. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Brener Z. Biology of Trypanosoma cruzi. Annu Rev Microbiol. 1973;27:347–382. doi: 10.1146/annurev.mi.27.100173.002023. [DOI] [PubMed] [Google Scholar]
  6. Cardozo C., Eleuteri A. M., Orlowski M. Differences in catalytic activities and subunit pattern of multicatalytic proteinase complexes (proteasomes) isolated from bovine pituitary, lung, and liver. Changes in LMP7 and the component necessary for expression of the chymotrypsin-like activity. J Biol Chem. 1995 Sep 22;270(38):22645–22651. doi: 10.1074/jbc.270.38.22645. [DOI] [PubMed] [Google Scholar]
  7. Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell. 1994 Oct 7;79(1):13–21. doi: 10.1016/0092-8674(94)90396-4. [DOI] [PubMed] [Google Scholar]
  8. Coux O., Tanaka K., Goldberg A. L. Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem. 1996;65:801–847. doi: 10.1146/annurev.bi.65.070196.004101. [DOI] [PubMed] [Google Scholar]
  9. Dick L. R., Cruikshank A. A., Grenier L., Melandri F. D., Nunes S. L., Stein R. L. Mechanistic studies on the inactivation of the proteasome by lactacystin: a central role for clasto-lactacystin beta-lactone. J Biol Chem. 1996 Mar 29;271(13):7273–7276. doi: 10.1074/jbc.271.13.7273. [DOI] [PubMed] [Google Scholar]
  10. Eakin A. E., Bouvier J., Sakanari J. A., Craik C. S., McKerrow J. H. Amplification and sequencing of genomic DNA fragments encoding cysteine proteases from protozoan parasites. Mol Biochem Parasitol. 1990 Feb;39(1):1–8. doi: 10.1016/0166-6851(90)90002-4. [DOI] [PubMed] [Google Scholar]
  11. Fenteany G., Standaert R. F., Lane W. S., Choi S., Corey E. J., Schreiber S. L. Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science. 1995 May 5;268(5211):726–731. doi: 10.1126/science.7732382. [DOI] [PubMed] [Google Scholar]
  12. Fenteany G., Standaert R. F., Reichard G. A., Corey E. J., Schreiber S. L. A beta-lactone related to lactacystin induces neurite outgrowth in a neuroblastoma cell line and inhibits cell cycle progression in an osteosarcoma cell line. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3358–3362. doi: 10.1073/pnas.91.8.3358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Franke de Cazzulo B. M., Martínez J., North M. J., Coombs G. H., Cazzulo J. J. Effects of proteinase inhibitors on the growth and differentiation of Trypanosoma cruzi. FEMS Microbiol Lett. 1994 Nov 15;124(1):81–86. doi: 10.1111/j.1574-6968.1994.tb07265.x. [DOI] [PubMed] [Google Scholar]
  14. Harth G., Andrews N., Mills A. A., Engel J. C., Smith R., McKerrow J. H. Peptide-fluoromethyl ketones arrest intracellular replication and intercellular transmission of Trypanosoma cruzi. Mol Biochem Parasitol. 1993 Mar;58(1):17–24. doi: 10.1016/0166-6851(93)90086-d. [DOI] [PubMed] [Google Scholar]
  15. Hilt W., Wolf D. H. Proteasomes of the yeast S. cerevisiae: genes, structure and functions. Mol Biol Rep. 1995;21(1):3–10. doi: 10.1007/BF00990964. [DOI] [PubMed] [Google Scholar]
  16. Hilt W., Wolf D. H. Proteasomes: destruction as a programme. Trends Biochem Sci. 1996 Mar;21(3):96–102. [PubMed] [Google Scholar]
  17. Hua S., To W. Y., Nguyen T. T., Wong M. L., Wang C. C. Purification and characterization of proteasomes from Trypanosoma brucei. Mol Biochem Parasitol. 1996 Jun;78(1-2):33–46. doi: 10.1016/s0166-6851(96)02599-6. [DOI] [PubMed] [Google Scholar]
  18. Kirchhoff L. V., Kim K. S., Engman D. M., Donelson J. E. Ubiquitin genes in trypanosomatidae. J Biol Chem. 1988 Sep 5;263(25):12698–12704. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Meirelles M. N., Juliano L., Carmona E., Silva S. G., Costa E. M., Murta A. C., Scharfstein J. Inhibitors of the major cysteinyl proteinase (GP57/51) impair host cell invasion and arrest the intracellular development of Trypanosoma cruzi in vitro. Mol Biochem Parasitol. 1992 Jun;52(2):175–184. doi: 10.1016/0166-6851(92)90050-t. [DOI] [PubMed] [Google Scholar]
  21. Moreno S. N., Silva J., Vercesi A. E., Docampo R. Cytosolic-free calcium elevation in Trypanosoma cruzi is required for cell invasion. J Exp Med. 1994 Oct 1;180(4):1535–1540. doi: 10.1084/jem.180.4.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murta A. C., Persechini P. M., Padron T. de S., de Souza W., Guimarães J. A., Scharfstein J. Structural and functional identification of GP57/51 antigen of Trypanosoma cruzi as a cysteine proteinase. Mol Biochem Parasitol. 1990 Nov;43(1):27–38. doi: 10.1016/0166-6851(90)90127-8. [DOI] [PubMed] [Google Scholar]
  23. Nandi D., Jiang H., Monaco J. J. Identification of MECL-1 (LMP-10) as the third IFN-gamma-inducible proteasome subunit. J Immunol. 1996 Apr 1;156(7):2361–2364. [PubMed] [Google Scholar]
  24. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  25. Orlowski M. The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry. 1990 Nov 13;29(45):10289–10297. doi: 10.1021/bi00497a001. [DOI] [PubMed] [Google Scholar]
  26. Palombella V. J., Rando O. J., Goldberg A. L., Maniatis T. The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell. 1994 Sep 9;78(5):773–785. doi: 10.1016/s0092-8674(94)90482-0. [DOI] [PubMed] [Google Scholar]
  27. Rechsteiner M., Hoffman L., Dubiel W. The multicatalytic and 26 S proteases. J Biol Chem. 1993 Mar 25;268(9):6065–6068. [PubMed] [Google Scholar]
  28. Rivett A. J., Savory P. J., Djaballah H. Multicatalytic endopeptidase complex: proteasome. Methods Enzymol. 1994;244:331–350. doi: 10.1016/0076-6879(94)44026-3. [DOI] [PubMed] [Google Scholar]
  29. Rock K. L., Gramm C., Rothstein L., Clark K., Stein R., Dick L., Hwang D., Goldberg A. L. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell. 1994 Sep 9;78(5):761–771. doi: 10.1016/s0092-8674(94)90462-6. [DOI] [PubMed] [Google Scholar]
  30. Santana J. M., Grellier P., Rodier M. H., Schrevel J., Teixeira A. Purification and characterization of a new 120 kDa alkaline proteinase of Trypanosoma cruzi. Biochem Biophys Res Commun. 1992 Sep 30;187(3):1466–1473. doi: 10.1016/0006-291x(92)90467-y. [DOI] [PubMed] [Google Scholar]
  31. Schenkman S., Diaz C., Nussenzweig V. Attachment of Trypanosoma cruzi trypomastigotes to receptors at restricted cell surface domains. Exp Parasitol. 1991 Jan;72(1):76–86. doi: 10.1016/0014-4894(91)90123-e. [DOI] [PubMed] [Google Scholar]
  32. Schenkman S., Jiang M. S., Hart G. W., Nussenzweig V. A novel cell surface trans-sialidase of Trypanosoma cruzi generates a stage-specific epitope required for invasion of mammalian cells. Cell. 1991 Jun 28;65(7):1117–1125. doi: 10.1016/0092-8674(91)90008-m. [DOI] [PubMed] [Google Scholar]
  33. Schenkman S., Robbins E. S., Nussenzweig V. Attachment of Trypanosoma cruzi to mammalian cells requires parasite energy, and invasion can be independent of the target cell cytoskeleton. Infect Immun. 1991 Feb;59(2):645–654. doi: 10.1128/iai.59.2.645-654.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schmatz D. M., Murray P. K. Cultivation of Trypanosoma cruzi in irradiated muscle cells: improved synchronization and enhanced trypomastigote production. Parasitology. 1982 Aug;85(Pt 1):115–125. doi: 10.1017/s0031182000054202. [DOI] [PubMed] [Google Scholar]
  35. Scholze H., Frey S., Cejka Z., Bakker-Grunwald T. Evidence for the existence of both proteasomes and a novel high molecular weight peptidase in Entamoeba histolytica. J Biol Chem. 1996 Mar 15;271(11):6212–6216. doi: 10.1074/jbc.271.11.6212. [DOI] [PubMed] [Google Scholar]
  36. Swindle J., Ajioka J., Eisen H., Sanwal B., Jacquemot C., Browder Z., Buck G. The genomic organization and transcription of the ubiquitin genes of Trypanosoma cruzi. EMBO J. 1988 Apr;7(4):1121–1127. doi: 10.1002/j.1460-2075.1988.tb02921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
  38. Tomlinson S., Vandekerckhove F., Frevert U., Nussenzweig V. The induction of Trypanosoma cruzi trypomastigote to amastigote transformation by low pH. Parasitology. 1995 Jun;110(Pt 5):547–554. doi: 10.1017/s0031182000065264. [DOI] [PubMed] [Google Scholar]
  39. Wang K. K., Yuen P. W. Calpain inhibition: an overview of its therapeutic potential. Trends Pharmacol Sci. 1994 Nov;15(11):412–419. doi: 10.1016/0165-6147(94)90090-6. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES