Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1985 Dec;164(3):1011–1016. doi: 10.1128/jb.164.3.1011-1016.1985

Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism.

M E Singer, W R Finnerty
PMCID: PMC219291  PMID: 4066609

Abstract

The role of fatty aldehyde dehydrogenases (FALDHs) in hexadecane and hexadecanol metabolism was studied in Acinetobacter sp. strain HO1-N. Two distinct FALDHs were demonstrated in Acinetobacter sp. strain HO1-N: a membrane-bound, NADP-dependent FALDH activity induced 5-, 15-, and 9-fold by growth on hexadecanol, dodecyl aldehyde, and hexadecane, respectively, and a constitutive, NAD-dependent, membrane-localized FALDH. The NADP-dependent FALDH exhibited apparent Km and Vmax values for decyl aldehyde of 5.0, 13.0, 18.0, and 18.3 microM and 537.0, 500.0, 25.0, and 38.0 nmol/min in hexadecane-, hexadecanol-, ethanol-, palmitate-grown cells, respectively. FALDH isozymes ald-a, ald-b, and ald-c were demonstrated by gel electrophoresis in extracts of hexadecane- and hexadecanol-grown cells. ald-a, ald-b, and ald-d were present in dodecyl aldehyde-grown cells, while palmitate-grown control cells contained ald-b and ald-d. Dodecyl aldehyde-negative mutants were isolated and grouped into two phenotypic classes based on growth: class 1 mutants were hexadecane and hexadecanol negative and class 2 mutants were hexadecane and hexadecanol positive. Specific activity of NADP-dependent FALDH in Ald21 (class 1 mutant) was 85% lower than that of wild-type FALDH, while the specific activity of Ald24 (class 2 mutant) was 55% greater than that of wild-type FALDH. Ald21R, a dodecyl aldehyde-positive revertant able to grow on hexadecane, hexadecanol, and dodecyl aldehyde, exhibited a 100% increase in the specific activity of the NADP-dependent FALDH. The oxidation of [3H]hexadecane byAld21 yielded the accumulation of 61% more fatty aldehyde than the wild type, while Ald24 accumulated 27% more fatty aldehyde, 95% more fatty alcohol, and 65% more wax ester than the wild type. This study provides genetic and physiological evidence for the role of fatty aldehyde as an essential metabolic intermediate and NADP-dependent FALDH as a key enzyme in the dissimilation of hexadecane, hexadecanol, and dodecyl aldehyde in Acinetobactor sp. strain HO1-N.

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aurich H., Eitner G. Induktion der NADP+-abhängigen Aldehyddehydrogenase durch Kohlenwasserstoffe bei Acinetobacter calcoaceticus. Z Allg Mikrobiol. 1977;17(4):263–266. doi: 10.1002/jobm.3630170402. [DOI] [PubMed] [Google Scholar]
  2. BAPTIST J. N., GHOLSON R. K., COON M. J. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim Biophys Acta. 1963 Jan 1;69:40–47. doi: 10.1016/0006-3002(63)91223-x. [DOI] [PubMed] [Google Scholar]
  3. Bertrand J. C., Gallo M., Azoulay E. Aldéhyde déhydrogénases soluble et particulaire de Pseudomonas aeruginosa. Biochimie. 1973;55(3):343–350. doi: 10.1016/s0300-9084(73)80135-x. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. Gallo M., Roche B., Aubert L., Azoulay E. Distribution des enzymes et des cytochromes do Candida tropicalis cultivé sur aleanes. Biochimie. 1973;55(2):195–203. doi: 10.1016/s0300-9084(73)80392-x. [DOI] [PubMed] [Google Scholar]
  6. Grund A., Shapiro J., Fennewald M., Bacha P., Leahy J., Markbreiter K., Nieder M., Toepfer M. Regulation of alkane oxidation in Pseudomonas putida. J Bacteriol. 1975 Aug;123(2):546–556. doi: 10.1128/jb.123.2.546-556.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guerrillot L., Vandecasteele J. P. Purification and characterization of two aldehyde dehydrogenases from Pseudomonas aeruginosa. Eur J Biochem. 1977 Nov 15;81(1):185–192. doi: 10.1111/j.1432-1033.1977.tb11940.x. [DOI] [PubMed] [Google Scholar]
  8. Lebeault J. M., Roche B., Duvnjak Z., Azoulay E. Alcool-et aldéhyde-déshydrogénases particulaires de Candida tropicalis cultivé sur hydrocarbures. Biochim Biophys Acta. 1970 Dec 16;220(3):373–385. doi: 10.1016/0005-2744(70)90269-x. [DOI] [PubMed] [Google Scholar]
  9. Lebeault J. M., Roche B., Duvnjak Z., Azoulay E. Isolation and study of the enzymes involved in the metabolism of hydrocarbons by Candida tropicalis. Arch Mikrobiol. 1970;72(2):140–153. doi: 10.1007/BF00409520. [DOI] [PubMed] [Google Scholar]
  10. Liu C. M., Johnson M. J. Alkane oxidation by a particulate preparation from Candida. J Bacteriol. 1971 Jun;106(3):830–834. doi: 10.1128/jb.106.3.830-834.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: identification of phospholipids. J Bacteriol. 1970 Aug;103(2):348–355. doi: 10.1128/jb.103.2.348-355.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Singer M. E., Finnerty W. R. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol. 1985 Dec;164(3):1017–1024. doi: 10.1128/jb.164.3.1017-1024.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Sorger H., Aurich H. Oxydation von homologen aliphatischen Aldehyden durch membrangebundene und solubilisierte Aldehyddehydrogenase aus Acinetobacter calcoaceticus. Z Allg Mikrobiol. 1978;18(8):587–591. doi: 10.1002/jobm.3630180806. [DOI] [PubMed] [Google Scholar]
  14. Yamada T., Nawa H., Kawamoto S., Tanaka A., Fukui S. Subcellular localization of long-chain alcohol dehydrogenase and aldehyde dehydrogenase in n-alkane-grown Candida tropicalis. Arch Microbiol. 1980 Dec;128(2):145–151. doi: 10.1007/BF00406151. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES