Abstract
Folate deficiency is present in most patients with alcoholic liver disease (ALD), whereas folate regulates and alcoholism perturbs intrahepatic methionine metabolism, and S-adenosyl-methionine prevents the development of experimental ALD. Our studies explored the hypothesis that abnormal methionine metabolism is exacerbated by folate deficiency and promotes the development of ALD in the setting of chronic ethanol exposure. Using the micropig animal model, dietary combinations of folate deficiency and a diet containing 40% of kcal as ethanol were followed by measurements of hepatic methionine metabolism and indices of ALD. Alcoholic liver injury, expressed as steatohepatitis in terminal 14 week liver specimens, was evident in micropigs fed the combined ethanol containing and folate deficient diet but not in micropigs fed each diet separately. Perturbations of methionine metabolism included decreased hepatic S-adenosylmethionine and glutathione with increased products of DNA and lipid oxidation. Thus, the development of ALD is linked to abnormal methionine metabolism and is accelerated in the presence of folate deficiency.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albano E., Clot P., Morimoto M., Tomasi A., Ingelman-Sundberg M., French S. W. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology. 1996 Jan;23(1):155–163. doi: 10.1002/hep.510230121. [DOI] [PubMed] [Google Scholar]
- Avila M. A., Berasain C., Torres L., Martín-Duce A., Corrales F. J., Yang H., Prieto J., Lu S. C., Caballería J., Rodés J. Reduced mRNA abundance of the main enzymes involved in methionine metabolism in human liver cirrhosis and hepatocellular carcinoma. J Hepatol. 2000 Dec;33(6):907–914. doi: 10.1016/s0168-8278(00)80122-1. [DOI] [PubMed] [Google Scholar]
- Barak A. J., Beckenhauer H. C., Tuma D. J., Badakhsh S. Effects of prolonged ethanol feeding on methionine metabolism in rat liver. Biochem Cell Biol. 1987 Mar;65(3):230–233. doi: 10.1139/o87-029. [DOI] [PubMed] [Google Scholar]
- Basnakian A. G., James S. J. Quantification of 3'OH DNA breaks by random oligonucleotide-primed synthesis (ROPS) assay. DNA Cell Biol. 1996 Mar;15(3):255–262. doi: 10.1089/dna.1996.15.255. [DOI] [PubMed] [Google Scholar]
- Cabrero C., Duce A. M., Ortiz P., Alemany S., Mato J. M. Specific loss of the high-molecular-weight form of S-adenosyl-L-methionine synthetase in human liver cirrhosis. Hepatology. 1988 Nov-Dec;8(6):1530–1534. doi: 10.1002/hep.1840080610. [DOI] [PubMed] [Google Scholar]
- Colell A., García-Ruiz C., Morales A., Ballesta A., Ookhtens M., Rodés J., Kaplowitz N., Fernández-Checa J. C. Transport of reduced glutathione in hepatic mitochondria and mitoplasts from ethanol-treated rats: effect of membrane physical properties and S-adenosyl-L-methionine. Hepatology. 1997 Sep;26(3):699–708. doi: 10.1002/hep.510260323. [DOI] [PubMed] [Google Scholar]
- Deaciuc I. V., Nikolova-Karakashian M., Fortunato F., Lee E. Y., Hill D. B., McClain C. J. Apoptosis and dysregulated ceramide metabolism in a murine model of alcohol-enhanced lipopolysaccharide hepatotoxicity. Alcohol Clin Exp Res. 2000 Oct;24(10):1557–1565. [PubMed] [Google Scholar]
- Duce A. M., Ortíz P., Cabrero C., Mato J. M. S-adenosyl-L-methionine synthetase and phospholipid methyltransferase are inhibited in human cirrhosis. Hepatology. 1988 Jan-Feb;8(1):65–68. doi: 10.1002/hep.1840080113. [DOI] [PubMed] [Google Scholar]
- Eichner E. R., Hillman R. S. The evolution of anemia in alcoholic patients. Am J Med. 1971 Feb;50(2):218–232. doi: 10.1016/0002-9343(71)90151-3. [DOI] [PubMed] [Google Scholar]
- Finkelstein J. D., Cello J. P., Kyle W. E. Ethanol-induced changes in methionine metabolism in rat liver. Biochem Biophys Res Commun. 1974 Nov 27;61(2):525–531. doi: 10.1016/0006-291x(74)90988-7. [DOI] [PubMed] [Google Scholar]
- García-Ruiz C., Colell A., Marí M., Morales A., Fernández-Checa J. C. Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem. 1997 Apr 25;272(17):11369–11377. doi: 10.1074/jbc.272.17.11369. [DOI] [PubMed] [Google Scholar]
- Garrow T. A. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem. 1996 Sep 13;271(37):22831–22838. doi: 10.1074/jbc.271.37.22831. [DOI] [PubMed] [Google Scholar]
- HERBERT V., ZALUSKY R., DAVIDSON C. S. Correlation of folate deficiency with alcoholism and associated macrocytosis, anemia, and liver disease. Ann Intern Med. 1963 Jun;58:977–988. doi: 10.7326/0003-4819-58-6-977. [DOI] [PubMed] [Google Scholar]
- Halsted C. H., Robles E. A., Mezey E. Decreased jejunal uptake of labeled folic acid ( 3 H-PGA) in alcoholic patients: roles of alcohol and nutrition. N Engl J Med. 1971 Sep 23;285(13):701–706. doi: 10.1056/NEJM197109232851301. [DOI] [PubMed] [Google Scholar]
- Halsted C. H., Villanueva J., Chandler C. J., Ruebner B., Munn R. J., Parkkila S., Niemelä O. Centrilobular distribution of acetaldehyde and collagen in the ethanol-fed micropig. Hepatology. 1993 Oct;18(4):954–960. doi: 10.1002/hep.1840180429. [DOI] [PubMed] [Google Scholar]
- Halsted C. H., Villanueva J., Chandler C. J., Stabler S. P., Allen R. H., Muskhelishvili L., James S. J., Poirier L. Ethanol feeding of micropigs alters methionine metabolism and increases hepatocellular apoptosis and proliferation. Hepatology. 1996 Mar;23(3):497–505. doi: 10.1002/hep.510230314. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A. Functions of ceramide in coordinating cellular responses to stress. Science. 1996 Dec 13;274(5294):1855–1859. doi: 10.1126/science.274.5294.1855. [DOI] [PubMed] [Google Scholar]
- Helbock H. J., Beckman K. B., Shigenaga M. K., Walter P. B., Woodall A. A., Yeo H. C., Ames B. N. DNA oxidation matters: the HPLC-electrochemical detection assay of 8-oxo-deoxyguanosine and 8-oxo-guanine. Proc Natl Acad Sci U S A. 1998 Jan 6;95(1):288–293. doi: 10.1073/pnas.95.1.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James S. J., Miller B. J., Basnakian A. G., Pogribny I. P., Pogribna M., Muskhelishvili L. Apoptosis and proliferation under conditions of deoxynucleotide pool imbalance in liver of folate/methyl deficient rats. Carcinogenesis. 1997 Feb;18(2):287–293. doi: 10.1093/carcin/18.2.287. [DOI] [PubMed] [Google Scholar]
- Kondo H., Osborne M. L., Kolhouse J. F., Binder M. J., Podell E. R., Utley C. S., Abrams R. S., Allen R. H. Nitrous oxide has multiple deleterious effects on cobalamin metabolism and causes decreases in activities of both mammalian cobalamin-dependent enzymes in rats. J Clin Invest. 1981 May;67(5):1270–1283. doi: 10.1172/JCI110155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leevy C. M., Cardi L., Frank O., Gellene R., Baker H. Incidence and significance of hypovitaminemia in a randomly selected municipal hospital population. Am J Clin Nutr. 1965 Oct;17(4):259–271. doi: 10.1093/ajcn/17.4.259. [DOI] [PubMed] [Google Scholar]
- Lieber C. S., Casini A., DeCarli L. M., Kim C. I., Lowe N., Sasaki R., Leo M. A. S-adenosyl-L-methionine attenuates alcohol-induced liver injury in the baboon. Hepatology. 1990 Feb;11(2):165–172. doi: 10.1002/hep.1840110203. [DOI] [PubMed] [Google Scholar]
- Lieber C. S. Ethanol metabolism, cirrhosis and alcoholism. Clin Chim Acta. 1997 Jan 3;257(1):59–84. doi: 10.1016/s0009-8981(96)06434-0. [DOI] [PubMed] [Google Scholar]
- Lieber C. S. Medical disorders of alcoholism. N Engl J Med. 1995 Oct 19;333(16):1058–1065. doi: 10.1056/NEJM199510193331607. [DOI] [PubMed] [Google Scholar]
- Lieber C. S., Robins S. J., Li J., DeCarli L. M., Mak K. M., Fasulo J. M., Leo M. A. Phosphatidylcholine protects against fibrosis and cirrhosis in the baboon. Gastroenterology. 1994 Jan;106(1):152–159. doi: 10.1016/s0016-5085(94)95023-7. [DOI] [PubMed] [Google Scholar]
- Lu S. C., Huang Z. Z., Yang H., Mato J. M., Avila M. A., Tsukamoto H. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am J Physiol Gastrointest Liver Physiol. 2000 Jul;279(1):G178–G185. doi: 10.1152/ajpgi.2000.279.1.G178. [DOI] [PubMed] [Google Scholar]
- Lu S. C. Methionine adenosyltransferase and liver disease: it's all about SAM. Gastroenterology. 1998 Feb;114(2):403–407. doi: 10.1016/s0016-5085(98)70494-9. [DOI] [PubMed] [Google Scholar]
- Mato J. M., Cámara J., Fernández de Paz J., Caballería L., Coll S., Caballero A., García-Buey L., Beltrán J., Benita V., Caballería J. S-adenosylmethionine in alcoholic liver cirrhosis: a randomized, placebo-controlled, double-blind, multicenter clinical trial. J Hepatol. 1999 Jun;30(6):1081–1089. doi: 10.1016/s0168-8278(99)80263-3. [DOI] [PubMed] [Google Scholar]
- McMartin K. E., Collins T. D., Eisenga B. H., Fortney T., Bates W. R., Bairnsfather L. Effects of chronic ethanol and diet treatment on urinary folate excretion and development of folate deficiency in the rat. J Nutr. 1989 Oct;119(10):1490–1497. doi: 10.1093/jn/119.10.1490. [DOI] [PubMed] [Google Scholar]
- Melnyk S., Pogribna M., Pogribny I. P., Yi P., James S. J. Measurement of plasma and intracellular S-adenosylmethionine and S-adenosylhomocysteine utilizing coulometric electrochemical detection: alterations with plasma homocysteine and pyridoxal 5'-phosphate concentrations. Clin Chem. 2000 Feb;46(2):265–272. [PubMed] [Google Scholar]
- Mendenhall C., Roselle G. A., Gartside P., Moritz T. Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res. 1995 Jun;19(3):635–641. doi: 10.1111/j.1530-0277.1995.tb01560.x. [DOI] [PubMed] [Google Scholar]
- Niemelä O., Parkkila S., Pasanen M., Viitala K., Villanueva J. A., Halsted C. H. Induction of cytochrome P450 enzymes and generation of protein-aldehyde adducts are associated with sex-dependent sensitivity to alcohol-induced liver disease in micropigs. Hepatology. 1999 Oct;30(4):1011–1017. doi: 10.1002/hep.510300413. [DOI] [PubMed] [Google Scholar]
- Niemelä O., Parkkila S., Ylä-Herttuala S., Villanueva J., Ruebner B., Halsted C. H. Sequential acetaldehyde production, lipid peroxidation, and fibrogenesis in micropig model of alcohol-induced liver disease. Hepatology. 1995 Oct;22(4 Pt 1):1208–1214. [PubMed] [Google Scholar]
- Pomfret E. A., daCosta K. A., Schurman L. L., Zeisel S. H. Measurement of choline and choline metabolite concentrations using high-pressure liquid chromatography and gas chromatography-mass spectrometry. Anal Biochem. 1989 Jul;180(1):85–90. doi: 10.1016/0003-2697(89)90091-2. [DOI] [PubMed] [Google Scholar]
- Romero J. J., Tamura T., Halsted C. H. Intestinal absorption of [3H]folic acid in the chronic alcoholic monkey. Gastroenterology. 1981 Jan;80(1):99–102. [PubMed] [Google Scholar]
- Román J., Colell A., Blasco C., Caballeria J., Parés A., Rodés J., Fernández-Checa J. C. Differential role of ethanol and acetaldehyde in the induction of oxidative stress in HEP G2 cells: effect on transcription factors AP-1 and NF-kappaB. Hepatology. 1999 Dec;30(6):1473–1480. doi: 10.1002/hep.510300623. [DOI] [PubMed] [Google Scholar]
- Russell R. M., Rosenberg I. H., Wilson P. D., Iber F. L., Oaks E. B., Giovetti A. C., Otradovec C. L., Karwoski P. A., Press A. W. Increased urinary excretion and prolonged turnover time of folic acid during ethanol ingestion. Am J Clin Nutr. 1983 Jul;38(1):64–70. doi: 10.1093/ajcn/38.1.64. [DOI] [PubMed] [Google Scholar]
- Tamura T., Halsted C. H. Folate turnover in chronically alcoholic monkeys. J Lab Clin Med. 1983 Apr;101(4):623–628. [PubMed] [Google Scholar]
- Tamura T., Romero J. J., Watson J. E., Gong E. J., Halsted C. H. Hepatic folate metabolism in the chronic alcoholic monkey. J Lab Clin Med. 1981 May;97(5):654–661. [PubMed] [Google Scholar]
- Taoka S., Widjaja L., Banerjee R. Assignment of enzymatic functions to specific regions of the PLP-dependent heme protein cystathionine beta-synthase. Biochemistry. 1999 Oct 5;38(40):13155–13161. doi: 10.1021/bi990865t. [DOI] [PubMed] [Google Scholar]
- Tilg H., Diehl A. M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N Engl J Med. 2000 Nov 16;343(20):1467–1476. doi: 10.1056/NEJM200011163432007. [DOI] [PubMed] [Google Scholar]
- Trimble K. C., Molloy A. M., Scott J. M., Weir D. G. The effect of ethanol on one-carbon metabolism: increased methionine catabolism and lipotrope methyl-group wastage. Hepatology. 1993 Oct;18(4):984–989. doi: 10.1002/hep.1840180433. [DOI] [PubMed] [Google Scholar]
- Tsukamoto H., Lu S. C. Current concepts in the pathogenesis of alcoholic liver injury. FASEB J. 2001 Jun;15(8):1335–1349. doi: 10.1096/fj.00-0650rev. [DOI] [PubMed] [Google Scholar]
- Wu A., Chanarin I., Slavin G., Levi A. J. Folate deficiency in the alcoholic--its relationship to clinical and haematological abnormalities, liver disease and folate stores. Br J Haematol. 1975 Mar;29(3):469–478. doi: 10.1111/j.1365-2141.1975.tb01844.x. [DOI] [PubMed] [Google Scholar]
- Yen C. L., Mar M. H., Zeisel S. H. Choline deficiency-induced apoptosis in PC12 cells is associated with diminished membrane phosphatidylcholine and sphingomyelin, accumulation of ceramide and diacylglycerol, and activation of a caspase. FASEB J. 1999 Jan;13(1):135–142. [PubMed] [Google Scholar]
- Yeo H. C., Liu J., Helbock H. J., Ames B. N. Assay of malondialdehyde and other alkanals in biological fluids by gas chromatography-mass spectrometry. Methods Enzymol. 1999;300:70–78. doi: 10.1016/s0076-6879(99)00115-9. [DOI] [PubMed] [Google Scholar]