Abstract
Studies have been carried out on the movement of salt and water across the small intestine of the rat. Segments of the ileum of anesthetized rats have been perfused in vivo with unbuffered NaCl solutions or isotonic solutions of NaCl and mannitol. Kinetic analysis of movements of Na24 and Cl36 has permitted determination of the efflux and influx of Na and Cl. Net water absorption has been measured using hemoglobin as a reference substance. Water was found to move freely in response to gradients of osmotic pressure. Net water flux from isotonic solutions with varying NaCl concentration was directly dependent on net solute flux. The amount of water absorbed was equivalent to the amount required to maintain the absorbed solute at isotonic concentration. These results have been interpreted as indicating that water movement is a passive process depending on gradients of water activity and on the rate of absorption of solute. The effluxes of Na and Cl are linear functions of concentration in the lumen, but both ions are actively transported by the ileum according to the criterion of Ussing (Acta Physiol. Scand., 1949, 19, 43). The electrical potential difference between the lumen and plasma has been interpreted as a diffusion potential slightly modified by the excess of active Cl flux over active Na flux. The physical properties of the epithelial membrane indicate that it is equivalent to a membrane having negatively charged uniform right circular pores of 36 Å radius occupying 0.001 per cent of the surface area.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BENSON J. A., Jr, LEE P. R., SCHOLER J. F., KIM K. S., BOLLMAN J. L. Water absorption from the intestine via portal and lymphatic pathways. Am J Physiol. 1956 Mar;184(3):441–444. doi: 10.1152/ajplegacy.1956.184.3.441. [DOI] [PubMed] [Google Scholar]
- BUCHER G. R., ANDERSON C. E., ROBINSON C. S. Chemical changes produced in isotonic solutions of sodium sulfate and sodium chloride by the small intestine of the dog. Am J Physiol. 1950 Oct;163(1):1–13. doi: 10.1152/ajplegacy.1950.163.1.1. [DOI] [PubMed] [Google Scholar]
- BUDOLFSEN S. E. The absorption of sodium chloride in the colon and the distal part of the small intestine. Acta Physiol Scand. 1954 Nov;32(2-3):148–162. doi: 10.1111/j.1748-1716.1954.tb01163.x. [DOI] [PubMed] [Google Scholar]
- D'AGOSTINO A., LEADBETTER W. F., SCHWARTZ W. B. Alterations in the ionic composition of isotonic saline solution instilled into the colon. J Clin Invest. 1953 May;32(5):444–448. doi: 10.1172/JCI102757. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DURBIN R. P., FRANK H., SOLOMON A. K. Water flow through frog gastric mucosa. J Gen Physiol. 1956 Mar 20;39(4):535–551. doi: 10.1085/jgp.39.4.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER R. B., PARSONS D. S. A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949 Dec 15;110(1-2):36-46, pl. doi: 10.1113/jphysiol.1949.sp004419. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FISHER R. B., PARSONS D. S. The gradient of mucosal surface area in the small intestine of the rat. J Anat. 1950 Jul;84(3):272–282. [PMC free article] [PubMed] [Google Scholar]
- FISHER R. B. The absorption of water and of some small solute molecules from the isolated small intestine of the rat. J Physiol. 1955 Dec 29;130(3):655–664. doi: 10.1113/jphysiol.1955.sp005433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRANGER B., BAKER R. F. Electron microscope investigation of the striated border of intestinal epithelium. Anat Rec. 1950 Aug;107(4):423–441. doi: 10.1002/ar.1091070409. [DOI] [PubMed] [Google Scholar]
- JERVIS E. L., JOHNSON F. R., SHEFF M. F., SMYTH D. H. The effect of phlorhizin on intestinal absorption and intestinal phosphatase. J Physiol. 1956 Dec 28;134(3):675–688. doi: 10.1113/jphysiol.1956.sp005674. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSEN V. K., USSING H. H. The influence of the corticotropic hormone from ox on the active salt uptake in the axolotl. Acta Physiol Scand. 1949 Jan 31;17(1):38–43. doi: 10.1111/j.1748-1716.1949.tb00551.x. [DOI] [PubMed] [Google Scholar]
- KARNOVSKY M. L., BRUMM A. F. Studies on naturally occurring alpha-glycerol ethers. J Biol Chem. 1955 Oct;216(2):689–701. [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The contributions of diffusion and flow to the passage of D2O through living membranes; effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol Scand. 1953 Mar 31;28(1):60–76. doi: 10.1111/j.1748-1716.1953.tb00959.x. [DOI] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R. Passage of molecules through capillary wals. Physiol Rev. 1953 Jul;33(3):387–423. doi: 10.1152/physrev.1953.33.3.387. [DOI] [PubMed] [Google Scholar]
- PAPPENHEIMER J. R., RENKIN E. M., BORRERO L. M. Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. Am J Physiol. 1951 Oct;167(1):13–46. doi: 10.1152/ajplegacy.1951.167.1.13. [DOI] [PubMed] [Google Scholar]
- RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
- Robinson C. V. Windowless, Flow Type, Proportional Counter for Counting C14. Science. 1950 Aug 18;112(2903):198–199. doi: 10.1126/science.112.2903.198. [DOI] [PubMed] [Google Scholar]
- TIDBALL M. E., TIDBALL C. S. Changes in rate of intestinal absorption of sodium chloride solutions. Am J Physiol. 1956 May;185(2):313–316. doi: 10.1152/ajplegacy.1956.185.2.313. [DOI] [PubMed] [Google Scholar]
- WILSON T. H. Fluid movement across the wall of the small intestine in vitro. Am J Physiol. 1956 Nov;187(2):244–246. doi: 10.1152/ajplegacy.1956.187.2.244. [DOI] [PubMed] [Google Scholar]