Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1958 Jan 20;41(3):501–528. doi: 10.1085/jgp.41.3.501

THE RHODOPSIN SYSTEM OF THE SQUID

Ruth Hubbard 1, Robert C C St George 1
PMCID: PMC2194838  PMID: 13491819

Abstract

Squid rhodopsin (λmax 493 mµ)—like vertebrate rhodopsins—contains a retinene chromophore linked to a protein, opsin. Light transforms rhodopsin to lumi- and metarhodopsin. However, whereas vertebrate metarhodopsin at physiological temperatures decomposes into retinene and opsin, squid metarhodopsin is stable. Light also converts squid metarhodopsin to rhodopsin. Rhodopsin is therefore regenerated from metarhodopsin in the light. Irradiation of rhodopsin or metarhodopsin produces a steady state by promoting the reactions, See PDF for Equation Squid rhodopsin contains neo-b (11-cis) retinene; metarhodopsin all-trans retinene. The interconversion of rhodopsin and metarhodopsin involves only the stereoisomerization of their chromophores. Squid metarhodopsin is a pH indicator, red (λmax 500 mµ) near neutrality, yellow (λmax 380 mµ) in alkaline solution. The two forms—acid and alkaline metarhodopsin—are interconverted according to the equation, Alkaline metarhodopsin + H+ ⇌acid metarhodopsin, with pK 7.7. In both forms, retinene is attached to opsin at the same site as in rhodopsin. However, metarhodopsin decomposes more readily than rhodopsin into retinene and opsin. The opsins apparently fit the shape of the neo-b chromophore. When light isomerizes the chromophore to the all-trans configuration, squid opsin accepts the all-trans chromophore, while vertebrate opsins do not and hence release all-trans retinene. Light triggers vision by affecting directly the shape of the retinene chromophore. This changes its relationship with opsin, so initiating a train of chemical reactions.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALL S., COLLINS F. D. Studies in vitamin A; reactions of retinene1 with amino compounds. Biochem J. 1949;45(3):304–307. doi: 10.1042/bj0450304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLLINS F. D. Rhodopsin and indicator yellow. Nature. 1953 Mar 14;171(4350):469–471. doi: 10.1038/171469a0. [DOI] [PubMed] [Google Scholar]
  3. CRESCITELLI F. The nature of the gecko visual pigment. J Gen Physiol. 1956 Nov 20;40(2):217–231. doi: 10.1085/jgp.40.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HUBBARD R., GREGERMAN R. I., WALD G. Geometrical isomers of retinene. J Gen Physiol. 1953 Jan;36(3):415–429. doi: 10.1085/jgp.36.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HUBBARD R. Retinene isomerase. J Gen Physiol. 1956 Jul 20;39(6):935–962. doi: 10.1085/jgp.39.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HUBBARD R., WALD G. Cis-trans isomers of vitamin A and retinene in the rhodopsin system. J Gen Physiol. 1952 Nov;36(2):269–315. doi: 10.1085/jgp.36.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lythgoe R. J., Quilliam J. P. The relation of transient orange to visual purple and indicator yellow. J Physiol. 1938 Dec 14;94(3):399–410. doi: 10.1113/jphysiol.1938.sp003689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. MORTON R. A., PITT G. A. Studies on rhodopsin. IX. pH and the hydrolysis of indicator yellow. Biochem J. 1955 Jan;59(1):128–134. doi: 10.1042/bj0590128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PITT G. A., COLLINS F. D., MORTON R. A., STOK P. Studies on rhodopsin. VIII. Retinylidenemethylamine, an indicator yellow analogue. Biochem J. 1955 Jan;59(1):122–128. doi: 10.1042/bj0590122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. RADDING C. M., WALD G. Acid-base properties of rhodopsin and opsin. J Gen Physiol. 1956 Jul 20;39(6):909–922. doi: 10.1085/jgp.39.6.909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RADDING C. M., WALD G. The stability of rhodopsin and opsin; effects of pH and aging. J Gen Physiol. 1956 Jul 20;39(6):923–933. doi: 10.1085/jgp.39.6.923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WALD G., BROWN P. K. The molar extinction of rhodopsin. J Gen Physiol. 1953 Nov 20;37(2):189–200. doi: 10.1085/jgp.37.2.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WALD G., BROWN P. K. The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin. J Gen Physiol. 1952 May;35(5):797–821. doi: 10.1085/jgp.35.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. WALD G., BROWN P. K. The vitamin A of a euphausiid crustacean. J Gen Physiol. 1957 Mar 20;40(4):627–634. doi: 10.1085/jgp.40.4.627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WALD G., BURG S. P. The vitamin A of the lobster. J Gen Physiol. 1957 Mar 20;40(4):609–625. doi: 10.1085/jgp.40.4.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. WALD G., DURELL J., ST GEORGE C. C. The light reaction in the bleaching of rhodopsin. Science. 1950 Feb 17;111(2877):179–181. doi: 10.1126/science.111.2877.179. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES