Abstract
A propagated potential produced in the Pacinian corpuscle in response to mechanical stimuli leaves a refractory state of 7 to 10 msec. duration. The refractory state is presumably produced at the first intracorpuscular node of Ranvier. The recovery of receptor excitability for producing an all-or-none response to mechanical stimulation follows the same time course as that of the electrically excited axon. Upon progressive reduction of stimulus interval (mechanical), the propagated potential falls progressively to 75 per cent of its resting magnitude and becomes finally blocked within the corpuscle. A non-propagated all-or-none potential, presumably corresponding to activity of the first node, is then detected. The critical firing level for all-or-none potentials increases progressively during the relative refractory period of the all-or-none potential, as the stimulus interval is shortened. Thus generator potentials up to 85 per cent of a propagated potential can be produced in absence of all-or-none activity. Generator potentials show: gradual over-all increase in amplitude and rate of rise as a function of stimulus strength; constant latency; and spontaneous fluctuations in amplitude. A generator potential leaves a refractory state (presumably at the non-myelinated ending) so that the amplitude of a second generator response which falls on its refractory trail is directly related to the time elapsed after the first generator response and inversely to its amplitude. The generator potential develops independently of any refractory state left by a preceding all-or-none potential.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALVAREZ-BUYLLA R., RAMIREZ DE ARELLANO J. Local responses in Pacinian corpuscles. Am J Physiol. 1953 Jan;172(1):237–244. doi: 10.1152/ajplegacy.1952.172.1.237. [DOI] [PubMed] [Google Scholar]
- ARAKI T., OTANI T. Response of single motoneurons to direct stimulation in toad's spinal cord. J Neurophysiol. 1955 Sep;18(5):472–485. doi: 10.1152/jn.1955.18.5.472. [DOI] [PubMed] [Google Scholar]
- COOMBS J. S., ECCLES J. C., FATT P. Excitatory synaptic action in motoneurones. J Physiol. 1955 Nov 28;130(2):374–395. doi: 10.1113/jphysiol.1955.sp005413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- COOMBS J. S., ECCLES J. C., FATT P. The electrical properties of the motoneurone membrane. J Physiol. 1955 Nov 28;130(2):291–325. doi: 10.1113/jphysiol.1955.sp005411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. An analysis of the end-plate potential recorded with an intracellular electrode. J Physiol. 1951 Nov 28;115(3):320–370. doi: 10.1113/jphysiol.1951.sp004675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANK K., FUORTES M. G. Potentials recorded from the spinal cord with microelectrodes. J Physiol. 1955 Dec 29;130(3):625–654. doi: 10.1113/jphysiol.1955.sp005432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FRANK K., FUORTES M. G. Stimulation of spinal motoneurones with intracellular electrodes. J Physiol. 1956 Nov 28;134(2):451–470. doi: 10.1113/jphysiol.1956.sp005657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRAY J. A., SATO M. Properties of the receptor potential in Pacinian corpuscles. J Physiol. 1953 Dec 29;122(3):610–636. doi: 10.1113/jphysiol.1953.sp005025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KEYNES R. D., MARTINS-FERREIRA H. Membrane potentials in the electroplates of the electric eel. J Physiol. 1953 Feb 27;119(2-3):315–351. doi: 10.1113/jphysiol.1953.sp004849. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R., ALTAMIRANO-ORREGO R. Generation and propagation of impulses during refractoriness in a Pacinian corpuscle. Nature. 1958 Jan 11;181(4602):124–125. doi: 10.1038/181124b0. [DOI] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R. Generator processes of repetitive activity in a pacinian corpuscle. J Gen Physiol. 1958 Mar 20;41(4):825–845. doi: 10.1085/jgp.41.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOEWENSTEIN W. R., RATHKAMP R. Localization of generator structures of electric activity in a Pacinian corpuscle. Science. 1958 Feb 14;127(3294):341–341. doi: 10.1126/science.127.3294.341. [DOI] [PubMed] [Google Scholar]
- NASTUK W. L. The electrical activity of the muscle cell membrane at the neuromuscular junction. J Cell Physiol. 1953 Oct;42(2):249–272. doi: 10.1002/jcp.1030420206. [DOI] [PubMed] [Google Scholar]
- QUILLIAM T. A., SATO M. The distribution of myelin on nerve fibres from Pacinian corpuscles. J Physiol. 1955 Jul 28;129(1):167–176. doi: 10.1113/jphysiol.1955.sp005345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROSENBLUETH A., ALANIS J., MANDOKI J. The functional refractory period of axons. J Cell Physiol. 1949 Jun;33(3):405–439. doi: 10.1002/jcp.1030330310. [DOI] [PubMed] [Google Scholar]
- TASAKI I. Initiation and abolition of the action potential of a single node of Ranvier. J Gen Physiol. 1956 Jan 20;39(3):377–395. doi: 10.1085/jgp.39.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WEIDMANN S. Effect of current flow on the membrane potential of cardiac muscle. J Physiol. 1951 Oct 29;115(2):227–236. doi: 10.1113/jphysiol.1951.sp004667. [DOI] [PMC free article] [PubMed] [Google Scholar]