Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1958 Jul 20;41(6):1245–1265. doi: 10.1085/jgp.41.6.1245

THE SITES FOR MECHANO-ELECTRIC CONVERSION IN A PACINIAN CORPUSCLE

Werner R Loewenstein 1, Raquel Rathkamp 1; With the Assistance of I. Zamudio1
PMCID: PMC2194881  PMID: 13563810

Abstract

The sensory nerve ending in the Pacinian corpuscle is surrounded by a non-nervous capsular structure which occupies about 99.9 per cent of the corpuscle's entire mass. After extirpation of practically all of the non-nervous structure, the sense organ's remains continue to function as a mechano-receptor, namely to produce generator and all-or-nothing potentials in response to mechanical stimuli. Compression of the first intracorpuscular node of Ranvier abolishes the production of "all-or-nothing" potentials in the corpuscle. Graded generator potentials constitute then the only response to mechanical stimulation. This reveals that the first node is the site of origin of the all-or-nothing potential and that the non-myelinated ending is incapable of producing all-or-nothing responses in response to mechanical stimulation. Compression of the entire length of non-myelinated ending suppresses the production of generator potentials. Partial compression of the ending abolishes mechano-responsiveness only of the compressed part. The intact remains of the ending continue to give generator potentials upon mechanical stimulation. This suggests that the generator potential arises at functionally independent membrane parts distributed all over the non-myelinated nerve ending. 24 to 36 hours after denervation of the corpuscle by transection of its sensory axon, no sign of electric activity is detected. Failure of mechano-reception at the nerve ending precedes that of conduction at the degenerating myelinated axon.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALVAREZ-BUYLLA R., RAMIREZ DE ARELLANO J. Local responses in Pacinian corpuscles. Am J Physiol. 1953 Jan;172(1):237–244. doi: 10.1152/ajplegacy.1952.172.1.237. [DOI] [PubMed] [Google Scholar]
  2. Adrian E. D., Umrath K. The impulse discharge from the pacinian corpuscle. J Physiol. 1929 Oct 23;68(2):139–154. doi: 10.1113/jphysiol.1929.sp002601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. DEL CASTILLO J., KATZ B. Biophysical aspects of neuro-muscular transmission. Prog Biophys Biophys Chem. 1956;6:121–170. [PubMed] [Google Scholar]
  4. FATT P., KATZ B. Spontaneous subthreshold activity at motor nerve endings. J Physiol. 1952 May;117(1):109–128. [PMC free article] [PubMed] [Google Scholar]
  5. GRAY J. A., SATO M. Properties of the receptor potential in Pacinian corpuscles. J Physiol. 1953 Dec 29;122(3):610–636. doi: 10.1113/jphysiol.1953.sp005025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GRUNDFEST H. Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol Rev. 1957 Jul;37(3):337–361. doi: 10.1152/physrev.1957.37.3.337. [DOI] [PubMed] [Google Scholar]
  7. KATZ B. Depolarization of sensory terminals and the initiation of impulses in the muscle spindle. J Physiol. 1950 Oct 16;111(3-4):261–282. doi: 10.1113/jphysiol.1950.sp004479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOEWENSTEIN W. R., ALTAMIRANO-ORREGO R. Generation and propagation of impulses during refractoriness in a Pacinian corpuscle. Nature. 1958 Jan 11;181(4602):124–125. doi: 10.1038/181124b0. [DOI] [PubMed] [Google Scholar]
  9. LOEWENSTEIN W. R., ALTAMIRANOORREGO R. The refractory state of the generator and propagated potentials in a pacinian corpuscle. J Gen Physiol. 1958 Mar 20;41(4):805–824. doi: 10.1085/jgp.41.4.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOEWENSTEIN W. R. Generator processes of repetitive activity in a pacinian corpuscle. J Gen Physiol. 1958 Mar 20;41(4):825–845. doi: 10.1085/jgp.41.4.825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOEWENSTEIN W. R., RATHKAMP R. Localization of generator structures of electric activity in a Pacinian corpuscle. Science. 1958 Feb 14;127(3294):341–341. doi: 10.1126/science.127.3294.341. [DOI] [PubMed] [Google Scholar]
  12. PEASE D. C., QUILLIAM T. A. Electron microscopy of the pacinian corpuscle. J Biophys Biochem Cytol. 1957 May 25;3(3):331–342. doi: 10.1083/jcb.3.3.331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. QUILLIAM T. A., SATO M. The distribution of myelin on nerve fibres from Pacinian corpuscles. J Physiol. 1955 Jul 28;129(1):167–176. doi: 10.1113/jphysiol.1955.sp005345. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES