Abstract
The calculated freezing point depression of freshly excised boiled mammalian tissue is approximately the same as that of plasma. The boiling procedure was chosen to eliminate the influence of metabolism on the level of the freezing point depression. Problems created by the boiling, such as equilibrium between tissue and diluent, change in activity coefficient by dilution, and loss of CO2 content, are discussed. A frozen crushed tissue homogenate is hypertonic to plasma. Boiling and dilution of such hypertonic homogenate exposed to room temperature for 5 to 15 minutes did not produce significant or unexplicable decreases in its osmotic activity. Moreover, freezing and crushing of a boiled diluted tissue did not produce any increase of the isoosmotic level of freezing point depression. It is possible to explain these data either with the hypothesis of hypertonic cell fluid or with that of isotonic cell fluid. In the case of an assumed isotonic cell fluid, data can be explained with one assumption, experimentally backed. In the case of an assumed hypertonic theory data can be explained only with the help of at least three ad hoc postulates. The data support the validity of the classical concept which holds that cell fluid is isotonic to extracellular fluid.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AEBI H. Kationenmilieu und Gewebsatmung. Helv Physiol Pharmacol Acta. 1950;8(4):525–543. [PubMed] [Google Scholar]
- APPELBOOM J. W., BRODSKY W. A., DENNIS W. H., DIAMOND I., MILEY J. F., REHM W. S. The freezing point depression of mammalian tissues in relation to the question of osmotic activity of cell fluid. J Gen Physiol. 1956 Nov 20;40(2):183–199. doi: 10.1085/jgp.40.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CONWAY E. J., GEOGHEGAN H., MCCORMACK J. I. Autolytic changes at zero centigrade in ground mammalian tissues. J Physiol. 1955 Nov 28;130(2):427–437. doi: 10.1113/jphysiol.1955.sp005416. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooke E. Experiments upon the Osmotic Properties of the Living Frog's Muscle. J Physiol. 1898 Jul 26;23(3):137–149. doi: 10.1113/jphysiol.1898.sp000719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DAVIES R. E., GALSTON A. W. Rapid rate of turnover of potassium ions in kidney slices. Nature. 1951 Oct 20;168(4277):700–700. doi: 10.1038/168700a0. [DOI] [PubMed] [Google Scholar]
- DEYRUP I. A study of the fluid uptake of rat kidney slices in vitro. J Gen Physiol. 1953 Jul;36(6):739–749. doi: 10.1085/jgp.36.6.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEYRUP I. Reversal of fluid uptake by rat kidney slices immersed in isosmotic solutions in vitro. Am J Physiol. 1953 Dec;175(3):349–352. doi: 10.1152/ajplegacy.1953.175.3.349. [DOI] [PubMed] [Google Scholar]
- Ferguson J. K., Roughton F. J. The direct chemical estimation of carbamino compounds of CO(2) with haemoglobin. J Physiol. 1934 Dec 14;83(1):68–86. doi: 10.1113/jphysiol.1934.sp003212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ITOH S., SCHWARTZ I. L. Studies of fluid exchanges between rat liver slices and simple media. J Gen Physiol. 1956 Nov 20;40(2):171–181. doi: 10.1085/jgp.40.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEAF A. On the mechanism of fluid exchange of tissues in vitro. Biochem J. 1956 Feb;62(2):241–248. doi: 10.1042/bj0620241. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUDGE G. H. Electrolyte and water metabolism of rabbit kidney slices; effect of metabolic inhibitors. Am J Physiol. 1951 Oct;167(1):206–223. doi: 10.1152/ajplegacy.1951.167.1.206. [DOI] [PubMed] [Google Scholar]
- MUDGE G. H. Electrolyte metabolism of rabbit-kidney slices; studies with radioactive potassium and sodium. Am J Physiol. 1953 Jun;173(3):511–522. doi: 10.1152/ajplegacy.1953.173.3.511. [DOI] [PubMed] [Google Scholar]
- MUDGE G. H. Studies on potassium accumulation by rabbit kidney slices; effect of metabolic activity. Am J Physiol. 1951 Apr 1;165(1):113–127. doi: 10.1152/ajplegacy.1951.165.1.113. [DOI] [PubMed] [Google Scholar]
- OPIE E. L. Osmotic activity of liver cells and melting point of liver. J Exp Med. 1954 Jan 1;99(1):29–41. doi: 10.1084/jem.99.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OPIE E. L., ROTHBARD M. B. Osmotic homeostasis maintained by mammalian liver, kidney, and other tissues. J Exp Med. 1953 Apr;97(4):483–497. doi: 10.1084/jem.97.4.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OPIE E. L. The movement of water in tissues removed from the body and its relation to movement of water during life. J Exp Med. 1949 Feb;89(2):185–208. doi: 10.1084/jem.89.2.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RIECKER G., ZACK W., RENSCHLER H. E. Untersuchungen zur Frage der osmotischen Konzentration von Leberzellen. Pflugers Arch. 1957;264(3):245–259. doi: 10.1007/BF00369945. [DOI] [PubMed] [Google Scholar]
- Stern J. R., Eggleston L. V., Hems R., Krebs H. A. Accumulation of glutamic acid in isolated brain tissue. Biochem J. 1949;44(4):410–418. [PMC free article] [PubMed] [Google Scholar]
- WHITTAM R., DAVIES R. E. Active transport of water, sodium, potassium and alpha-oxoglutarate by kidney-cortex slices. Biochem J. 1953 Dec;55(5):880–888. doi: 10.1042/bj0550880. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WIRZ H., HARGITAY B., KUHN W. Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoskopie. Helv Physiol Pharmacol Acta. 1951 Jun;9(2):196–207. [PubMed] [Google Scholar]