Abstract
A shift of pH of pepsin solutions from 4.6 to 1.0 gives rise to spectral displacements in the ultraviolet. If represented as difference spectra three peaks with maxima at 2770, 2850, and 2930 Ångströms are present which can be attributed to the tyrosine and tryptophan residues in the protein. On mild autolysis of pepsin at pH 2.0 the absorbancy in the ultraviolet further decreases. Although some of these effects can be ascribed to the occurrence of hydrogen bonding between the aromatic residues and a carboxylate ion, those observed on autolysis are caused by charge effects of newly formed polar groups in the vicinity of a chromophore. No direct relation between the optical properties described here and enzymic activity of pepsin has been observed.
Full Text
The Full Text of this article is available as a PDF (428.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER L. E. New synthetic substrates for pepsin. J Biol Chem. 1951 Dec;193(2):809–819. [PubMed] [Google Scholar]
- BLUMENFELD O. O., PERLMANN G. E. The amino acid composition of crystalline pepsin. J Gen Physiol. 1959 Jan 20;42(3):553–561. doi: 10.1085/jgp.42.3.553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HERRIOTT R. M. The active groups of pepsin. J Cell Physiol Suppl. 1956 May;47(Suppl 1):239–243. doi: 10.1002/jcp.1030470417. [DOI] [PubMed] [Google Scholar]
- HIRS C. H., STEIN W. H., MOORE S. The amino acid composition of ribonuclease. J Biol Chem. 1954 Dec;211(2):941–950. [PubMed] [Google Scholar]
- Harington C. R., Rivers R. V. The synthesis of cysteine-(cystine-) tyrosine peptides and the action thereon of crystalline pepsin. Biochem J. 1944;38(5):417–423. doi: 10.1042/bj0380417. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LASKOWSKI M., Jr, WIDOM J. M., MCFADDEN M. L., SCHERAGA H. A. Differential ultraviolet spectra of insulin. Biochim Biophys Acta. 1956 Mar;19(3):581–582. doi: 10.1016/0006-3002(56)90502-9. [DOI] [PubMed] [Google Scholar]
- SCHERAGA H. A. Tyrosyl-carboxylate ion hydrogen bonding in ribonuclease. Biochim Biophys Acta. 1957 Jan;23(1):196–197. doi: 10.1016/0006-3002(57)90304-9. [DOI] [PubMed] [Google Scholar]
- SELA M., ANFINSEN C. B., HARRINGTON W. F. The correlation of ribonuclease activity with specific aspects of tertiary structure. Biochim Biophys Acta. 1957 Dec;26(3):502–512. doi: 10.1016/0006-3002(57)90096-3. [DOI] [PubMed] [Google Scholar]
- SELA M., ANFINSEN C. B. Some spectrophotometric and polarimetric experiments with ribonuclease. Biochim Biophys Acta. 1957 May;24(2):229–235. doi: 10.1016/0006-3002(57)90186-5. [DOI] [PubMed] [Google Scholar]
- SHUGAR D. The ultraviolet absorption spectrum of ribonuclease. Biochem J. 1952 Sep;52(1):142–149. doi: 10.1042/bj0520142. [DOI] [PMC free article] [PubMed] [Google Scholar]