Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1959 May 20;42(5):931–958. doi: 10.1085/jgp.42.5.931

RESPONSES OF MOTONEURONS UNDERGOING CHROMATOLYSIS

A K McIntyre 1, K Bradley 1, L G Brock 1
PMCID: PMC2194938  PMID: 13654743

Abstract

The delayed and asynchronous firing of chromatolytic motoneurons in response to group I afferent volleys is shown to be evoked monosynaptically, there being an abnormally long and variable delay between onset of monosynaptic action and generation of impulse discharge. Intensity of monosynaptic excitatory action is reduced, and considerable variability in the form of successively evoked postsynaptic potentials is often observed. No evidence has been found for the development of excitatory group I polysynaptic pathways. Reduction in responsiveness of finer dendrites is indicated by the feeble "d" response evoked by an antidromic volley in a chromatolytic motor nucleus. Antidromic impulses appear to invade the cell bodies and coarse dendrites, but die out at points short of the normal extent of dendritic invasion. Vigorous firing of Renshaw cells can be elicited by antidromic volleys. Chromatolytic motoneurons appear to maintain reasonably normal resting membrane potentials, but are more susceptible to damage than are normal cells. Action potentials are large and usually overshoot the resting potential level. Post spike potentials are similar to those of normal cells except for a less prominent, or absent, early phase of depolarisation. In contrast with the reduced responsiveness of peripheral dendrites, there is a lowered threshold for antidromic and segmental reflex synaptic activation of the more central regions, probably the cell bodies and nearby coarse dendrites, of motoneurons undergoing chromatolysis.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BERNHARD C. G., TAVERNER D., WIDEN L. Differences in the action of tubocurarine and strychnine on the spinal reflex excitability of the cat. Br J Pharmacol Chemother. 1951 Dec;6(4):551–559. doi: 10.1111/j.1476-5381.1951.tb00666.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BROCK L. G., COOMBS J. S., ECCLES J. C. Intracellular recording from antidromically activated motoneurones. J Physiol. 1953 Dec 29;122(3):429–461. doi: 10.1113/jphysiol.1953.sp005013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BROCK L. G., COOMBS J. S., ECCLES J. C. The recording of potentials from motoneurones with an intracellular electrode. J Physiol. 1952 Aug;117(4):431–460. doi: 10.1113/jphysiol.1952.sp004759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BROOKS C. M., DOWNMAN C. B. B., ECCLES J. C. After-potentials and excitability of spinal motoneurones following antidromic activation. J Neurophysiol. 1950 Jan;13(1):9–38. doi: 10.1152/jn.1950.13.1.9. [DOI] [PubMed] [Google Scholar]
  6. BROWN G. L., PASCOE J. E. The effect of degenerative section of ganglionic axons on transmission through the ganglion. J Physiol. 1954 Mar 29;123(3):565–573. doi: 10.1113/jphysiol.1954.sp005071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CAMPBELL B., MARK V. H., GASTEIGER E. L. Alteration of neuron excitability by retrograde degeneration. Am J Physiol. 1949 Sep;158(3):457–464. doi: 10.1152/ajplegacy.1949.158.3.457. [DOI] [PubMed] [Google Scholar]
  8. Campbell B. ALTERATIONS IN THE ANTIDROMIC POTENTIAL OF MOTOR NEURONS FOLLOWING CHROMATOLYSIS. Science. 1945 Apr 20;101(2625):412–413. doi: 10.1126/science.101.2625.412. [DOI] [PubMed] [Google Scholar]
  9. DOWNMAN C. B. B., ECCLES J. C., MCINTYRE A. K. Functional changes in chromatolysed motoneurones. J Comp Neurol. 1953 Feb;98(1):9–36. doi: 10.1002/cne.900980104. [DOI] [PubMed] [Google Scholar]
  10. ECCLES J. C., FATT P., KOKETSU K. Cholinergic and inhibitory synapses in a pathway from motor-axon collaterals to motoneurones. J Physiol. 1954 Dec 10;126(3):524–562. doi: 10.1113/jphysiol.1954.sp005226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. ECCLES J. C., LIBET B., YOUNG R. R. The behaviour of chromatolysed motoneurones studied by intracellular recording. J Physiol. 1958 Aug 29;143(1):11–40. doi: 10.1113/jphysiol.1958.sp006041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. ECCLES J. C., McINTYRE A. K. The effects of disuse and of activity on mammalian spinal reflexes. J Physiol. 1953 Sep;121(3):492–516. doi: 10.1113/jphysiol.1953.sp004961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FATT P. Sequence of events in synaptic activation of a motoneurone. J Neurophysiol. 1957 Jan;20(1):61–80. doi: 10.1152/jn.1957.20.1.61. [DOI] [PubMed] [Google Scholar]
  14. FUORTES M. G., FRANK K., BECKER M. C. Steps in the production of motoneuron spikes. J Gen Physiol. 1957 May 20;40(5):735–752. doi: 10.1085/jgp.40.5.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HENNEMAN E., KAPLAN A., UNNA K. A neuropharmacological study on the effect of myanesin (tolserol) on motor systems. J Pharmacol Exp Ther. 1949 Nov;97(3):331–341. [PubMed] [Google Scholar]
  16. KAADA B. R. Site of action of myanesin in the central nervous system. J Neurophysiol. 1950 Jan;13(1):89–104. doi: 10.1152/jn.1950.13.1.89. [DOI] [PubMed] [Google Scholar]
  17. LLOYD D. P. C. After-currents, after-potentials, excitability, and ventral root electrotonus in spinal motoneurons. J Gen Physiol. 1951 Nov;35(2):289–321. doi: 10.1085/jgp.35.2.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LLOYD D. P. C. Electrical signs of impulse conduction in spinal motoneurons. J Gen Physiol. 1951 Nov;35(2):255–288. doi: 10.1085/jgp.35.2.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. LLOYD D. P. C. Influence of asphyxia upon the responses of spinal motoneurons. J Gen Physiol. 1953 May;36(5):673–702. doi: 10.1085/jgp.36.5.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. LLOYD D. P. C., McINTYRE A. K. On the origins of dorsal root potentials. J Gen Physiol. 1949 Mar 20;32(4):409–443. doi: 10.1085/jgp.32.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. MARK V. H. Effects of chromatolysis on interaction of spinal motoneurons. Am J Physiol. 1949 Nov;159(2):233–238. doi: 10.1152/ajplegacy.1949.159.2.233. [DOI] [PubMed] [Google Scholar]
  22. NAESS K. The effect of d-tubocurarine on the mono- and polysynaptic reflex of the spinal cord including a comparison with the effect of strychnine. Acta Physiol Scand. 1950;21(1):34–40. doi: 10.1111/j.1748-1716.1950.tb00162.x. [DOI] [PubMed] [Google Scholar]
  23. TAVERNER D. The action of alpha-beta-dihydroxy-gamma-(2-methylphenoxy)-propane (myanesin) on the spinal cord of the cat. Br J Pharmacol Chemother. 1952 Dec;7(4):655–664. doi: 10.1111/j.1476-5381.1952.tb00734.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES