Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1959 May 20;42(5):983–1003. doi: 10.1085/jgp.42.5.983

RUBIDIUM AND CESIUM FLUXES IN MUSCLE AS RELATED TO THE MEMBRANE POTENTIAL

Raymond A Sjodin 1
PMCID: PMC2194939  PMID: 13654746

Abstract

The reduction of membrane potential in frog sartorius muscle produced by rubidium and cesium ions has been studied over a wide concentration range and compared with depolarization occasioned by potassium ions. The constant field theory of passive flux has been used to predict the potential changes observed. The potential data suggest certain permeability coefficient ratios and these are compared with ratios obtained from flux data using radioactive tracers. The agreement of the flux with the potential data is good if account is taken of the inhibition of potassium flux which occurs in the presence of rubidium and cesium ions. A high temperature dependence has been observed for cesium influx (Q 10 = 2.5) which is correlated with the observation that cesium ions depolarize very little at low temperatures. The observations suggest that cesium ions behave more like sodium ions at low temperatures and more like potassium ions at room temperature with respect to their effect on the muscle cell resting potential. The constant field theory of passive ion flux appears to be in general agreement with the experimental results observed if account is taken of the dependence of permeability coefficients on the concentrations of ions used and of possible interactions between the permeabilities of ions.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CAREY M. J., CONWAY E. J. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fibre Na+. J Physiol. 1954 Aug 27;125(2):232–250. doi: 10.1113/jphysiol.1954.sp005154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FENG T. P., LIU Y. M. The concentration effect relationship in the depolarization of amphibian nerve by potassium and other agents. J Cell Physiol. 1949 Aug;34(1):33–42. doi: 10.1002/jcp.1030340104. [DOI] [PubMed] [Google Scholar]
  5. GUTTMAN R., DOWLING J. A., ROSS S. M. Resting potential and contractile system changes in muscles stimulated by cold and potassium. J Cell Physiol. 1957 Oct;50(2):265–276. doi: 10.1002/jcp.1030500209. [DOI] [PubMed] [Google Scholar]
  6. HARRIS E. J. The exchangeability of the potassium of frog muscle, studied in phosphate media. J Physiol. 1952 Jul;117(3):278–288. doi: 10.1113/jphysiol.1952.sp004748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HODGKIN A. L., KEYNES R. D. The potassium permeability of a giant nerve fibre. J Physiol. 1955 Apr 28;128(1):61–88. doi: 10.1113/jphysiol.1955.sp005291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hodgkin A. L. The effect of potassium on the surface membrane of an isolated axon. J Physiol. 1947 Jul 31;106(3):319–340. doi: 10.1113/jphysiol.1947.sp004215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. JENERICK H. P. Muscle membrane potential, resistance, and external potassium chloride. J Cell Physiol. 1953 Dec;42(3):427–448. doi: 10.1002/jcp.1030420309. [DOI] [PubMed] [Google Scholar]
  11. KEYNES R. D. The ionic movements during nervous activity. J Physiol. 1951 Jun;114(1-2):119–150. doi: 10.1113/jphysiol.1951.sp004608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LUBIN M., SCHNEIDER P. B. The exchange of potassium for caesium and rubidium in frog muscle. J Physiol. 1957 Aug 29;138(1):140–155. doi: 10.1113/jphysiol.1957.sp005842. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. SANDOW A., MANDEL H. Effects of potassium and rubidium on the resting potential of muscle. J Cell Physiol. 1951 Oct;38(2):271–291. doi: 10.1002/jcp.1030380210. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES