Abstract
The distribution of Ca45 in frog (Rana pipiens) sartorius muscle, after 4 hours' exposure to Ringer's solution containing radiocalcium, has been analyzed by observing the kinetics of escape of the radioisotope into a non-radioactive Ringer's solution with calcium present or absent and by assuming that the tendon of Achilles is a satisfactory model of the extent of the uptake and release of Ca45 by the interstitial connective tissue (c.t.). In a Ringer's solution containing 1 mM/liter calcium, the exchangeable calcium distribution in micromoles per gram wet weight is as follows: (a) Aqueous phase of c.t. space: 0.16; (b) bound to c.t.: 0.16; (c) bound to surface of fibers: 0.13, of which 0.03 is displaced only by self-exchange, whereas the rest, as in c.t., can be displaced by other ions; and (d) in myoplasm: 0.33. The kinetics of Ca45 exit suggests that in infinite time of exposure to Ca45 the myoplasmic component would rise to 0.85. In the muscles, the half-time of the quickly emerging Ca45 averages about 3 minutes, whereas the time constant of the slowly released component is about 500 minutes. In the tendons the percentage rate of escape falls exponentially, the half-time of emergence being about 10 minutes.
Full Text
The Full Text of this article is available as a PDF (865.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIANCHI C. P., SHANES A. M. Calcium influx in skeletal muscle at rest, during activity, and during potassium contracture. J Gen Physiol. 1959 Mar 20;42(4):803–815. doi: 10.1085/jgp.42.4.803. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CAREY M. J., CONWAY E. J. Comparison of various media for immersing frog sartorii at room temperature, and evidence for the regional distribution of fibre Na+. J Physiol. 1954 Aug 27;125(2):232–250. doi: 10.1113/jphysiol.1954.sp005154. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DESMEDT J. E. Electrical activity and intracellular sodium concentration in frog muscle. J Physiol. 1953 Jul;121(1):191–205. doi: 10.1113/jphysiol.1953.sp004940. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FENN W. O., GILBERT D. L. Calcium equilibrium in muscle. J Gen Physiol. 1957 Jan 20;40(3):393–408. doi: 10.1085/jgp.40.3.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HODGKIN A. L., KEYNES R. D. Movements of labelled calcium in squid giant axons. J Physiol. 1957 Sep 30;138(2):253–281. doi: 10.1113/jphysiol.1957.sp005850. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MANERY J. F. Water and electrolyte metabolism. Physiol Rev. 1954 Apr;34(2):334–417. doi: 10.1152/physrev.1954.34.2.334. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R., HARRIS E. J. Accumulation of calcium (or strontium) under conditions of increasing contractility. Nature. 1957 May 25;179(4569):1068–1069. doi: 10.1038/1791068a0. [DOI] [PubMed] [Google Scholar]
- NIEDERGERKE R. The rate of action of calcium ions on the contraction of the heart. J Physiol. 1957 Oct 30;138(3):506–515. doi: 10.1113/jphysiol.1957.sp005867. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHANES A. M., BERMAN M. D. Penetration of the desheathed toad sciatic nerve by ions and molecules. II. Kinetics. J Cell Physiol. 1955 Apr;45(2):199–240. doi: 10.1002/jcp.1030450205. [DOI] [PubMed] [Google Scholar]
- SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
- SOLOWAY S., WELSH J. H., SOLOMON A. K. Studies on Ca45 transport in crayfish nerve. J Cell Physiol. 1953 Dec;42(3):471–485. doi: 10.1002/jcp.1030420311. [DOI] [PubMed] [Google Scholar]
