Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1959 Jul 20;42(6):1219–1231. doi: 10.1085/jgp.42.6.1219

FUNCTIONAL ORGANIZATION IN THE TERMINAL SEGMENTS OF THE SPINAL CORD WITH A CONSIDERATION OF CENTRAL EXCITATORY AND INHIBITORY LATENCIES IN MONOSYNAPTIC REFLEX SYSTEMS

David P C Lloyd 1, Victor J Wilson 1
PMCID: PMC2194955  PMID: 13664922

Abstract

Prominent monosynaptic and disynaptic reflex discharges characterize ipsilateral reflex transmission in the third sacral segment. Convergence upon the motoneurons from the two sides of the body is inhibitory, that through disynaptic paths excitatory. The relative latencies of excitation and inhibition of reflex responses, of excitatory and inhibitory synaptic potentials, and of various aspects of impulse discharge in motoneurons are considered. It is concluded: (1) that a direct (i.e. monosynaptic) action of primary afferent collaterals upon motoneurons is responsible for inhibition of monosynaptic reflex discharge of antagonist motoneurons within a myotatic unit; (2) that the inhibitory postsynaptic potential as described is not the primary agency for monosynaptic reflex inhibition of monosynaptic reflex discharge; (3) that, however, a common causal agent may be responsible for inhibition of reflex discharge and for generation of an inhibitory postsynaptic potential; and (4) that the inhibitory post-synaptic potential may be linked with, or be the agent for, inhibition of soma response.

Full Text

The Full Text of this article is available as a PDF (755.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COOMBS J. S., ECCLES J. C., FATT P. Excitatory synaptic action in motoneurones. J Physiol. 1955 Nov 28;130(2):374–395. doi: 10.1113/jphysiol.1955.sp005413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COOMBS J. S., ECCLES J. C., FATT P. The inhibitory suppression of reflex discharges from motoneurones. J Physiol. 1955 Nov 28;130(2):396–413. doi: 10.1113/jphysiol.1955.sp005414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURTIS D. R., KRNJEVIC K., MILEDI R. Crossed inhibition of sacral motoneurones. J Neurophysiol. 1958 Jul;21(4):319–326. doi: 10.1152/jn.1958.21.4.319. [DOI] [PubMed] [Google Scholar]
  4. ECCLES J. C., FATT P., LANDGREN S. Central pathway for direct inhibitory action of impulses in largest afferent nerve fibres to muscle. J Neurophysiol. 1956 Jan;19(1):75–98. doi: 10.1152/jn.1956.19.1.75. [DOI] [PubMed] [Google Scholar]
  5. FATT P., KATZ B. The effect of inhibitory nerve impulses on a crustacean muscle fibre. J Physiol. 1953 Aug;121(2):374–389. doi: 10.1113/jphysiol.1953.sp004952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LAPORTE Y., LLOYD D. P. C. Nature and significance of the reflex connections established by large afferent fibers of muscular origin. Am J Physiol. 1952 Jun;169(3):609–621. doi: 10.1152/ajplegacy.1952.169.3.609. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES