Abstract
Dually innervated Romalea muscle fibers which respond differently to stimulation of their fast and slow axons are excited by intracellularly applied depolarizing stimuli. The responses, though spike-like in appearance, are graded in amplitude depending upon the strength of the stimuli and do not exceed about 30 mv. in height. In other respects, however, these graded responses possess properties that are characteristic of electrically excitable activity: vanishingly brief latency; refractoriness; a post-spike undershoot. They are blocked by hyperpolarizing the fiber membrane; respond repetitively to prolonged depolarization, and are subject to depolarizing inactivation. As graded activity, these responses propagate decrementally. The fast and slow axons of the dually responsive muscle fibers initiate respectively large and small postsynaptic potentials (p.s.p.'s) in the muscle fiber. These responses possess properties that characterize electrically inexcitable depolarizing activity. They are augmented by hyperpolarization and diminished by depolarization. Their latency is independent of the membrane potential. They have no refractory period, thus being capable of summation. The fast p.s.p. evokes a considerable or maximal electrically excitable response. The combination, which resembles a spike, leads to a twitch-like contraction of the muscle fiber. The individual slow p.s.p.'s elicit no or only little electrically excitable responses, and they evoke slower smaller contractile responses. The functional aspects of dual responsiveness and the several aspects of the theoretical importance of the gradedly responsive, electrically excitable component are discussed.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ALTAMIRANO M., COATES C. W., GRUNDFEST H. Mechanisms of direct and neural excitability in electroplaques of electric eel. J Gen Physiol. 1955 Jan 20;38(3):319–360. doi: 10.1085/jgp.38.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ALTAMIRANO M., COATES C. W., GRUNDFEST H., NACHMANSOHN D. Electrical activity in electric tissue. III. Modifications of electrical activity by acetylcholine and related compounds. Biochim Biophys Acta. 1955 Apr;16(4):449–463. doi: 10.1016/0006-3002(55)90263-8. [DOI] [PubMed] [Google Scholar]
- BENNETT M. V., CRAIN S. M., GRUNDFEST H. Electrophysiology of supramedullary neurons in Spheroides maculatus. II. Properties of the electrically excitable membrane. J Gen Physiol. 1959 Sep;43:189–219. doi: 10.1085/jgp.43.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BRYANT S. H. Transmission in squid giant synapses: the importance of oxygen supply and the effects of drugs. J Gen Physiol. 1958 Jan 20;41(3):473–484. doi: 10.1085/jgp.41.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DEL CASTILLO J., HOYLE G., MACHNE X. Neuromuscular transmission in a locust. J Physiol. 1953 Sep;121(3):539–547. doi: 10.1113/jphysiol.1953.sp004963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., GINSBORG B. L. The ionic requirements for the production of action potentials in crustacean muscle fibres. J Physiol. 1958 Aug 6;142(3):516–543. doi: 10.1113/jphysiol.1958.sp006034. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FATT P., KATZ B. The electrical properties of crustacean muscle fibres. J Physiol. 1953 Apr 28;120(1-2):171–204. doi: 10.1113/jphysiol.1953.sp004884. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GRUNDFEST H. An electrophysiological basis for neuropharmacology. Fed Proc. 1958 Dec;17(4):1006–1018. [PubMed] [Google Scholar]
- GRUNDFEST H. Electrical inexcitability of synapses and some consequences in the central nervous system. Physiol Rev. 1957 Jul;37(3):337–361. doi: 10.1152/physrev.1957.37.3.337. [DOI] [PubMed] [Google Scholar]
- GRUNDFEST H. General problems of drugs actions on bioelectric phenomena. Ann N Y Acad Sci. 1957 Mar 14;66(3):537–591. doi: 10.1111/j.1749-6632.1957.tb40748.x. [DOI] [PubMed] [Google Scholar]
- GRUNDFEST H., REUBEN J. P., RICKLES W. H., Jr The electrophysiology and pharmacology of lobster neuromuscular synapses. J Gen Physiol. 1959 Jul 20;42(6):1301–1323. doi: 10.1085/jgp.42.6.1301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HAGIWARA S., WATANABE A. Action potential of insect muscle examined with intra-cellular electrode. Jpn J Physiol. 1954 Mar 5;4(1):65–78. doi: 10.2170/jjphysiol.4.65. [DOI] [PubMed] [Google Scholar]
- HOYLE G. Neuromuscular mechanisms of a locus skeletal muscle. Proc R Soc Lond B Biol Sci. 1955 Mar 15;143(912):343–367. doi: 10.1098/rspb.1955.0016. [DOI] [PubMed] [Google Scholar]
- HOYLE G. The anatomy and innervation of locust skeletal muscle. Proc R Soc Lond B Biol Sci. 1955 Jan 27;143(911):281–292. doi: 10.1098/rspb.1955.0011. [DOI] [PubMed] [Google Scholar]
- HOYLE G., WIERSMA C. A. Excitation at neuromuscular junctions in Crustacea. J Physiol. 1958 Oct 31;143(3):403–425. doi: 10.1113/jphysiol.1958.sp006068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KAO C. Y., GRUNDFEST H. Membrane potentials of the squid giant axon recorded with an inserted antimony microelectrode. Experientia. 1957 Apr 15;13(4):140–141. doi: 10.1007/BF02158132. [DOI] [PubMed] [Google Scholar]
- KAO C. Y., HOFFMAN B. F. Graded and decremental response in heart muscle fibers. Am J Physiol. 1958 Jul;194(1):187–196. doi: 10.1152/ajplegacy.1958.194.1.187. [DOI] [PubMed] [Google Scholar]
- KUFFLER S. W., VAUGHAN WILLIAMS E. M. Properties of the 'slow' skeletal muscles fibres of the frog. J Physiol. 1953 Aug;121(2):318–340. doi: 10.1113/jphysiol.1953.sp004949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]