Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1959 Mar 20;42(4):793–802. doi: 10.1085/jgp.42.4.793

ANESTHETIC AND CALCIUM ACTION IN THE VOLTAGE CLAMPED SQUID GIANT AXON

A M Shanes 1, W H Freygang 1, H Grundfest 1, E Amatniek 1
PMCID: PMC2195003  PMID: 13631204

Abstract

Changes in spike configuration and in the inward and outward currents of voltage-clamped axons agree in indicating that the increases in permeability to sodium and potassium ions during activity are depressed by procaine and cocaine and augmented by calcium. At low levels of depolarization, the effect of the multivalent ion is similar to that of the local anesthetics, in keeping with their similar effects on the threshold of excitability. The reduction of membrane conductance at rest requires a higher concentration of the drugs than that needed to affect the increase in permeability with activity.

Full Text

The Full Text of this article is available as a PDF (604.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. FRANKENHAEUSER B., HODGKIN A. L. The action of calcium on the electrical properties of squid axons. J Physiol. 1957 Jul 11;137(2):218–244. doi: 10.1113/jphysiol.1957.sp005808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HODGKIN A. L., HUXLEY A. F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952 Aug;117(4):500–544. doi: 10.1113/jphysiol.1952.sp004764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HODGKIN A. L., HUXLEY A. F. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):449–472. doi: 10.1113/jphysiol.1952.sp004717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., HUXLEY A. F., KATZ B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol. 1952 Apr;116(4):424–448. doi: 10.1113/jphysiol.1952.sp004716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. HODGKIN A. L., HUXLEY A. F. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):497–506. doi: 10.1113/jphysiol.1952.sp004719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  9. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. II. The action potential and excitation. Pharmacol Rev. 1958 Jun;10(2):165–273. [PubMed] [Google Scholar]
  10. SHANES A. M., GRUNDFEST H., FREYGANG W. Low level impedance changes following the spike in the squid giant axon before and after treatment with "veratrine" alkaloids. J Gen Physiol. 1953 Sep;37(1):39–51. doi: 10.1085/jgp.37.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. TASAKI I., BAK A. F. Discrete threshold and repetitive responses in the squid axon under voltage-clamp. Am J Physiol. 1958 May;193(2):301–308. doi: 10.1152/ajplegacy.1958.193.2.301. [DOI] [PubMed] [Google Scholar]
  12. TASAKI I., SPYROPOULOS C. S. Nonuniform response in the squid axon membrana under voltage-clamp. Am J Physiol. 1958 May;193(2):309–317. doi: 10.1152/ajplegacy.1958.193.2.309. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES