Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1960 May 1;43(5):961–970. doi: 10.1085/jgp.43.5.961

Resting and Action Potentials of the Squid Giant Axon in Vivo

John W Moore 1, Kenneth S Cole 1
PMCID: PMC2195050  PMID: 14423873

Abstract

Blood oxygenation and circulation were maintained in Loligo pealii for several hours by a strong flow of sea water over both gills on the open, flat mantle. Potentials were measured with a 3 M KCl-filled glass microelectrode penetrating the giant axon membrane. An hour or more after the mantle was opened, the potentials were similar to those observed in excised axons and in preparations without circulation; spike height 100 mv.; undershoot 12 mv., decaying at 6 v./sec.; resting potential 63 mv. However, the earliest (20 minute) resting potentials were up to 70 mv. and 73 mv. Occasional initial action potential measurements (40 to 50 minute) showed a decay of the undershoot that was less than one-tenth the rate observed later. This suggests that in even better preparations there would be no decay, thereby increasing the resting potential and spike height by 12 mv. With the calculated liquid junction potential of 4 mv. the absolute resting potential in the "normal" axon in vivo is estimated to be about 77 mv., which is close to the Nernst potential for the potassium ratio between squid blood and axoplasm. The differences between such a normal axon and the usual isolated axon can be accounted for by a negligible leakage conductance in the normal axon.

Full Text

The Full Text of this article is available as a PDF (654.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLE K. S., MOORE J. W. Liquid junction and membrane potentials of the squid giant axon. J Gen Physiol. 1960 May;43:971–980. doi: 10.1085/jgp.43.5.971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. HODGKIN A. L., HUXLEY A. F. The components of membrane conductance in the giant axon of Loligo. J Physiol. 1952 Apr;116(4):473–496. doi: 10.1113/jphysiol.1952.sp004718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hodgkin A. L., Huxley A. F. Resting and action potentials in single nerve fibres. J Physiol. 1945 Oct 15;104(2):176–195. doi: 10.1113/jphysiol.1945.sp004114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  7. SHANES A. M., BERMAN M. D. Kinetics of ion movement in the squid giant axon. J Gen Physiol. 1955 Nov 20;39(2):279–300. doi: 10.1085/jgp.39.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. SHANES A. M. Effect of temperature on potassium liberation during nerve activity. Am J Physiol. 1954 Jun;177(3):377–382. doi: 10.1152/ajplegacy.1954.177.3.377. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES