Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1960 Sep 1;44(1):61–85. doi: 10.1085/jgp.44.1.61

Studies on the Carrier Function of Phosphatidic Acid in Sodium Transport

I. The turnover of phosphatidic acid and phosphoinositide in the avian salt gland on stimulation of secretion

Lowell E Hokin 1, Mabel R Hokin 1
PMCID: PMC2195077  PMID: 13715209

Abstract

Incubation of slices of the salt gland of the albatross with acetylcholine, which is the physiological secretogogue for this tissue, led to a 13-fold increase in the rate of incorporation of P32 into phosphatidic acid and a 3-fold increase in the incorporation of P32 and inositol-2-H3 into phosphoinositide. The incorporation of P32 into phosphatidyl choline and phosphatidyl ethanolamine was increased relatively slightly or not at all. Respiration was doubled. The "phospholipid effect" occurred in the microsome fraction, which is known to contain fragments of the endoplasmic reticulum. The enzymes, diglyceride kinase and phosphatidic acid phosphatase, which catalyze the stimulated turnover of phosphatidic acid in brain cortex, were also found in highest concentration in the microsome fraction. The phosphatides which respond to acetylcholine are bound to protein in the membrane. On the basis of these findings it appears that phosphatidic acid and possibly phosphoinositide participate in sodium transport. A scheme, termed the phosphatidic acid cycle, is presented as a working hypothesis, in which the turnover of phosphatidic acid in the membrane, catalyzed by diglyceride kinase and phosphatidic acid phosphatase, functions as a sodium pump.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AGRANOFF B. W., BRADLEY R. M., BRADY R. O. The enzymatic synthesis of inositol phosphatide. J Biol Chem. 1958 Nov;233(5):1077–1083. [PubMed] [Google Scholar]
  2. Berenblum I., Chain E. An improved method for the colorimetric determination of phosphate. Biochem J. 1938 Feb;32(2):295–298. doi: 10.1042/bj0320295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boyle P. J., Conway E. J. Potassium accumulation in muscle and associated changes. J Physiol. 1941 Aug 11;100(1):1–63. doi: 10.1113/jphysiol.1941.sp003922. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CURRAN P. F., LIONETTI F., SOLOMON A. K. Possible cation-carrier substances in blood. Nature. 1956 Sep 15;178(4533):582–583. doi: 10.1038/178582a0. [DOI] [PubMed] [Google Scholar]
  5. DAVIES R. E., HARPER A. A., MACKAY I. F. S. A comparison of the respiratory activity and histological changes in isolated pancreatic tissue. Am J Physiol. 1949 May;157(2):278–282. doi: 10.1152/ajplegacy.1949.157.2.278. [DOI] [PubMed] [Google Scholar]
  6. Davies R. E. Hydrochloric acid production by isolated gastric mucosa: With an appendix by R. E. Davies and F. J. W. Roughton. Biochem J. 1948;42(4):609–621. [PMC free article] [PubMed] [Google Scholar]
  7. Deutsch W., Raper H. S. Respiration and functional activity. J Physiol. 1936 Aug 19;87(3):275–286. doi: 10.1113/jphysiol.1936.sp003405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Deutsch W., Raper H. S. The respiration and metabolism of submaxillary gland tissue of the cat. J Physiol. 1938 May 14;92(4):439–458. doi: 10.1113/jphysiol.1938.sp003614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. FANGE R., SCHMIDT-NIELSEN K., ROBINSON M. Control of secretion from the avian salt gland. Am J Physiol. 1958 Nov;195(2):321–326. doi: 10.1152/ajplegacy.1958.195.2.321. [DOI] [PubMed] [Google Scholar]
  10. HANAHAN D. J., DITTMER J. C., WARASHINA E. A column chromatographic separation of classes of phospholipides. J Biol Chem. 1957 Oct;228(2):685–700. [PubMed] [Google Scholar]
  11. HANZON V., TOSCHI G. Electron microscopy of microsomal fractions from rat brain. Exp Cell Res. 1959 Feb;16(2):256–271. doi: 10.1016/0014-4827(59)90253-8. [DOI] [PubMed] [Google Scholar]
  12. HOGBEN C. A. Active transport of chloride by isolated frog gastric epithelium; origin of the gastric mucosal potential. Am J Physiol. 1955 Mar;180(3):641–649. [PubMed] [Google Scholar]
  13. HOKIN L. E., HOKIN M. R. Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J Biol Chem. 1958 Oct;233(4):818–821. [PubMed] [Google Scholar]
  14. HOKIN L. E., HOKIN M. R. Acetylcholine and the exchange of phosphate in phosphatidic acid in brain microsomes. J Biol Chem. 1958 Oct;233(4):822–826. [PubMed] [Google Scholar]
  15. HOKIN L. E., HOKIN M. R. Evidence for phosphatidic acid as the sodium carrier. Nature. 1959 Oct 3;184(Suppl 14):1068–1069. doi: 10.1038/1841068a0. [DOI] [PubMed] [Google Scholar]
  16. HOKIN L. E., HOKIN M. R. Phosphoinositides and protein secretion in pancreas slices. J Biol Chem. 1958 Oct;233(4):805–810. [PubMed] [Google Scholar]
  17. HOKIN L. E., HOKIN M. R. Studies of pancreatic tissue in vitro. Gastroenterology. 1959 Mar;36(3):368–376. [PubMed] [Google Scholar]
  18. HOKIN L. E., HOKIN M. R. Synthesis of a new phosphatide from monoglyceride and adenosine triphosphate. Biochim Biophys Acta. 1960 Jan 1;37:176–177. doi: 10.1016/0006-3002(60)90105-0. [DOI] [PubMed] [Google Scholar]
  19. HOKIN L. E., HOKIN M. R. The actions of pancreozymin in pancreas slices and the role of phospholipids in enzyme secretion. J Physiol. 1956 May 28;132(2):442–453. doi: 10.1113/jphysiol.1956.sp005536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. HOKIN L. E., HOKIN M. R. The mechanism of phosphate exchange in phosphatidic acid in response to acetylcholine. J Biol Chem. 1959 Jun;234(6):1387–1390. [PubMed] [Google Scholar]
  21. HOKIN L. E., HOKIN M. R. The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int Rev Neurobiol. 1960;2:99–136. doi: 10.1016/s0074-7742(08)60121-x. [DOI] [PubMed] [Google Scholar]
  22. HOKIN L. E., SHERWIN A. L. Protein secretion and phosphate turnover in the phospholipids in salivary glands in vitro. J Physiol. 1957 Jan 23;135(1):18–29. doi: 10.1113/jphysiol.1957.sp005690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. HOKIN M. R., BENFEY B. G., HOKIN L. E. Phospholipides and adrenaline secretion in guinea pig adrenal medulla. J Biol Chem. 1958 Oct;233(4):814–817. [PubMed] [Google Scholar]
  24. HOKIN M. R., HOKIN L. E., SAFFRAN M., SCHALLY A. V., ZIMMERMANN B. U. Phospholipides and the secretion of adrenocorticotropin and of corticosteroids. J Biol Chem. 1958 Oct;233(4):811–813. [PubMed] [Google Scholar]
  25. HOKIN M. R., HOKIN L. E. The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J Biol Chem. 1959 Jun;234(6):1381–1386. [PubMed] [Google Scholar]
  26. LEAF A., PAGE L. B., ANDERSON J. Respiration and active sodium transport of isolated toad bladder. J Biol Chem. 1959 Jun;234(6):1625–1629. [PubMed] [Google Scholar]
  27. LEAF A., RENSHAW A. Ion transport and respiration of isolated frog skin. Biochem J. 1957 Jan;65(1):82–90. doi: 10.1042/bj0650082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. REDMAN C. M., HOKIN L. E. Phospholipide turnover in microsomal membranes of the pancreas during enzyme secretion. J Biophys Biochem Cytol. 1959 Oct;6:207–214. doi: 10.1083/jcb.6.2.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. SCHMIDT-NIELSEN K., JORGENSEN C. B., OSAKI H. Extrarenal salt excretion in birds. Am J Physiol. 1958 Apr;193(1):101–107. doi: 10.1152/ajplegacy.1958.193.1.101. [DOI] [PubMed] [Google Scholar]
  30. SCHMIDT-NIELSEN K., SLADEN W. J. Nasal salt secretion in the Humboldt penguin. Nature. 1958 Apr 26;181(4617):1217–1218. doi: 10.1038/1811217b0. [DOI] [PubMed] [Google Scholar]
  31. SCOTHORNE R. J. The nasal glands of birds: a histological and histochemical study of the inactive gland in the domestic duck. J Anat. 1959 Apr;93(2):246–256. [PMC free article] [PubMed] [Google Scholar]
  32. SOLOWAY A. H. Correlation of drug penetration of brain and chemical structure. Science. 1958 Dec 19;128(3338):1572–1574. doi: 10.1126/science.128.3338.1572-a. [DOI] [PubMed] [Google Scholar]
  33. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  34. WETZSTEIN R. Elektronenmikroskopische Untersuchungen am Nebennierenmark von Maus, Meerschweinchen und Katze. Z Zellforsch Mikrosk Anat. 1957;46(5):517–576. [PubMed] [Google Scholar]
  35. ZERAHN K. Oxygen consumption and active sodium transport in the isolated and short-circuited frog skin. Acta Physiol Scand. 1956 May 31;36(4):300–318. doi: 10.1111/j.1748-1716.1956.tb01327.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES