Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1960 Sep 1;44(1):33–60. doi: 10.1085/jgp.44.1.33

The Mechanochemistry of Muscular Contraction

I. The isometric twitch

Francis D Carlson 1, Alvin Siger 1
PMCID: PMC2195079  PMID: 13690828

Abstract

The dependence of PC1 and ATP1 dephosphorylation on the number of isometric twitches in the iodoacetate-nitrogen-poisoned muscle has been examined. There is no net dephosphorylation of adenosinetriphosphate. PC dephosphorylation varies linearly with the number of twitches and produces equivalent amounts of C1 and P1i.1 Iodoacetate concentrations which block the enzyme, creatine phosphokinase, render the muscle non-contractile. A value of 0.286 µmole/gm. for the amount of PC split per twitch is obtained which gives a value of -9.62 kcal./mole for the "physiological" heat of hydrolysis of PC in agreement with expectations based on thermochemical data. In a single maximal isometric twitch it is estimated that 2 to 3 PC molecules are dephosphorylated per myosin molecule, or 1 per actin molecule. The results support the view that under the conditions of these experiments PC dephosphorylation is the net energy yielding reaction. The in vivo stoichiometry of the mechano-chemistry of contraction revealed by these studies on the one hand, and the known stoichiometry of actin polymerization and its coupling to the creatine phosphokinase system on the other are strikingly similar and strongly suggest that the reversible polymerization of actin is involved in a major way in the contraction-relaxation-recovery cycle of muscle.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BENDALL J. R., DAVEY C. L. Ammonia liberation during rigor mortis and its relation to changes in the adenine and inosine nucleotides of rabbit muscle. Biochim Biophys Acta. 1957 Oct;26(1):93–103. doi: 10.1016/0006-3002(57)90059-8. [DOI] [PubMed] [Google Scholar]
  2. BERNHARD S. A. Ionization constants and heats of tris(hydroxymethyl)aminomethane and phosphate buffers. J Biol Chem. 1956 Feb;218(2):961–969. [PubMed] [Google Scholar]
  3. Bate-Smith E. C., Bendall J. R. Rigor mortis and adenosine-triphosphate. J Physiol. 1947 Jun 2;106(2):177–185. [PMC free article] [PubMed] [Google Scholar]
  4. CARLSON F. D., SIGER A. The creatine phosphoryltransfer reaction in iodoacetate-poisoned muscle. J Gen Physiol. 1959 Nov;43:301–313. doi: 10.1085/jgp.43.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHANCE B., CONNELLY C. M. A method for the estimation of the increase in concentration of adenosine diphosphate in muscle sarcosomes following a contraction. Nature. 1957 Jun 15;179(4572):1235–1237. doi: 10.1038/1791235a0. [DOI] [PubMed] [Google Scholar]
  6. CHANCE B. The response of mitochondria to muscular contraction. Ann N Y Acad Sci. 1959 Aug 28;81:477–489. doi: 10.1111/j.1749-6632.1959.tb49329.x. [DOI] [PubMed] [Google Scholar]
  7. DAVIES R. E., CAIN D., DELLUVA A. M. The energy supply for muscle contraction. Ann N Y Acad Sci. 1959 Aug 28;81:468–476. doi: 10.1111/j.1749-6632.1959.tb49328.x. [DOI] [PubMed] [Google Scholar]
  8. FLECKENSTEIN A., JANKE J., DAVIES R. E., KREBS H. A. Chemistry of muscle contraction; contraction of muscle without fission of adenosine triphosphate or creatine phosphate. Nature. 1954 Dec 11;174(4441):1081–1083. doi: 10.1038/1741081a0. [DOI] [PubMed] [Google Scholar]
  9. Fenn W. O. A quantitative comparison between the energy liberated and the work performed by the isolated sartorius muscle of the frog. J Physiol. 1923 Dec 28;58(2-3):175–203. doi: 10.1113/jphysiol.1923.sp002115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fenn W. O., Marsh B. S. Muscular force at different speeds of shortening. J Physiol. 1935 Nov 22;85(3):277–297. doi: 10.1113/jphysiol.1935.sp003318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. HANSON J., HUXLEY H. E. Quantitative studies on the structure of cross-striated myofibrils. II. Investigations by biochemical techniques. Biochim Biophys Acta. 1957 Feb;23(2):250–260. doi: 10.1016/0006-3002(57)90326-8. [DOI] [PubMed] [Google Scholar]
  12. HILL A. V. A note on the heat of activation in a muscle twitch. Proc R Soc Lond B Biol Sci. 1950 Oct 13;137(888):330–331. doi: 10.1098/rspb.1950.0044. [DOI] [PubMed] [Google Scholar]
  13. HILL A. V. The heat of activation and the heat of shortening in a muscle twitch. Proc R Soc Lond B Biol Sci. 1949 Jun 23;136(883):195–211. doi: 10.1098/rspb.1949.0019. [DOI] [PubMed] [Google Scholar]
  14. HUXLEY A. F., NIEDERGERKE R. Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature. 1954 May 22;173(4412):971–973. doi: 10.1038/173971a0. [DOI] [PubMed] [Google Scholar]
  15. HUXLEY H. E., HANSON J. Quantitative studies on the structure of cross-striated myofibrils. I. Investigations by interference microscopy. Biochim Biophys Acta. 1957 Feb;23(2):229–249. doi: 10.1016/0006-3002(57)90325-6. [DOI] [PubMed] [Google Scholar]
  16. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  17. JEWELL B. R., WILKIE D. R. An analysis of the mechanical components in frog's striated muscle. J Physiol. 1958 Oct 31;143(3):515–540. doi: 10.1113/jphysiol.1958.sp006075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. LAKI K., STANDAERT J. The minimal molecular weight of actin estimated with the use of carboxypeptidase A. Arch Biochem Biophys. 1960 Jan;86:16–18. doi: 10.1016/0003-9861(60)90360-x. [DOI] [PubMed] [Google Scholar]
  19. MOMMAERTS W. F. H. M. The molecular transformations of actin. I. Globular actin. J Biol Chem. 1952 Sep;198(1):445–457. [PubMed] [Google Scholar]
  20. MOMMAERTS W. F. Investigation of the presumed breakdown of adenosine-triphosphate and phosphocreatine during a single muscle twitch. Am J Physiol. 1955 Sep;182(3):585–593. doi: 10.1152/ajplegacy.1955.182.3.585. [DOI] [PubMed] [Google Scholar]
  21. MORALES M., BOTTS J. A model for the elementary process in muscle action. Arch Biochem Biophys. 1952 Jun;37(2):283–300. doi: 10.1016/0003-9861(52)90193-8. [DOI] [PubMed] [Google Scholar]
  22. PODOLSKY R. J., MORALES M. F. The enthalpy change of adenosine triphosphate hydrolysis. J Biol Chem. 1956 Feb;218(2):945–959. [PubMed] [Google Scholar]
  23. STROHMAN R. C. Studies on the enzymic interactions of the bound nucleotide of the bound nucleotide of the muscle protein actin. Biochim Biophys Acta. 1959 Apr;32:436–449. doi: 10.1016/0006-3002(59)90617-1. [DOI] [PubMed] [Google Scholar]
  24. SZENT-GYORGYI A. Free-energy relations and contraction of actomyosin. Biol Bull. 1949 Apr;96(2):140–161. [PubMed] [Google Scholar]
  25. VON HIPPEL P. H., SCHACHMAN H. K., APPEL P., MORALES M. F. On the molecular weight of myosin. Biochim Biophys Acta. 1958 Jun;28(3):504–507. doi: 10.1016/0006-3002(58)90511-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES